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The energetic aspect of the sound radiation has been analyzed in the case of the three-wall corner region.
This region is the part of space bounded by three ba�es arranged perpendicularly to one another. The Neumann
boundary value problem has been solved assuming that the sound source is the vibrating circular plate embedded
in one of the ba�es of the three-wall corner region. The Kelvin�Voigt theory of a visco-elastic plate has been
used which allows to include internal attenuation existing in the plate material. It has been assumed that the
sound source is excited to vibrations by the external pressure asymmetrically distributed on the plate surface.
The modal coe�cients of the acoustic impedance have been obtained in the form of the expressions containing
single integrals only. The formula describing the acoustic power of the analyzed sound source has been presented
as a fourfold in�nite series containing the modal coe�cients of the acoustic impedance. The in�uence of some
asymmetric excitations on the acoustic power has been analyzed. The possibilities of the modelling some uniform
excitations located on the plate fragment of the small area by the point force excitation has been examined. The
in�uence of the transverse ba�es on the acoustic power has also been investigated. It has been determined for
which frequency the ba�es in�uence on the acoustic power is the greatest.

PACS: 43.20.Ks, 43.20.Rz, 43.40.+s, 43.20.�f, 43.20.+g

1. Introduction

The plates very often constitute some constructional
elements in many industries, transport and architecture.
The excited to vibration plates radiate some acoustic
wave which can be considered in many cases as undesir-
able and harmful phenomena. Therefore, the theoretical
analysis of the acoustic properties of such source is partic-
ularly important from a practical point of view. At the
stage of construction, the pure theoretical calculations
enable to predict some acoustic properties of designed
systems which allows to create and modify projects with
view to noise reduction. There are a number of papers
devoted to the sound radiation of the plates located in a
�at in�nite and perfectly rigid ba�e. The method of the
acoustic resistance matrix has been used to obtain the
radiation e�ciency of the circular and rectangular plates
excited by the harmonic point force excitation for the low
frequency range [1, 2]. Based on the coupling matrix,
the acoustic power of rectangular plate has been calcu-
lated for the arbitrary boundary conditions [3]. Taking
into account the acoustic attenuation and the external
surface excitation the formulae describing the sound ra-
diation of the circular membrane [4] and circular plate
[5�8] have been obtained. The possibilities of an active
reduction of vibrations and noise have been examined in
many papers [9�14]. The analysis of the energetic as-
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pect of sound radiation is very essential especially when
some surface sources generate the acoustic waves into the
region bounded by ba�es of di�erent shapes and acous-
tic properties. In particular, the region of the two-wall
corner and three-wall corner are very important from a
practical point of view. They constitute the part of space
bounded by three and two arranged perpendicularly to
one another ba�es, respectively.

In the low frequency range, the two-wall corner and
three-wall corner regions can model commonly found ar-
chitectural structures for example regions bounded by
buildings walls. So far, there are few papers concerning
the sound radiation into the two-wall and three-wall cor-
ner regions. It concerns even the simplest sound sources
such as pistons and membranes. The Green function
of the Neumann boundary value problem has been pre-
sented for the two-wall corner region as well as for three-
-wall corner region [15]. In paper [16], the sound pres-
sure radiated by a circular piston has been obtained in
the case of the both corner regions. The possibility of
the active noise reduction has been examined in the case
of two pistons embedded in the di�erent ba�es of the
three-wall corner [17]. The acoustic power of a vibrat-
ing circular membrane located at the boundary of the
three-wall corner region has been presented in Ref. [18].
However, there have been obtained the modal coe�cients
of the acoustic impedance describing interaction of two
modes cosine�cosine and sine�sine, only. The interaction
of the pair of modes sine�cosine and cosine�sine has not
been reported. All the modal coe�cients of the acoustic
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impedance needed to obtain the correct results for the
acoustic power of the vibrating circular membrane lo-
cated at the boundary of the two-wall corner region have
been presented in Ref. [19]. However, the obtained for-
mulae and performed analysis are insu�cient to describe
the sound radiation into the three-wall corner region. So
far, the radiation of a vibrating circular plate located on
one ba�e of three-wall corner has not been presented
in the case of excitation located on any fragment of the
plate surface.
Therefore, this paper is focused on presenting the

complete set of the modal coe�cients of the acoustic
impedance which enable calculation of the acoustic power
circular plate located at the boundary of three-wall cor-
ner region. The modal coe�cients cosine�cosine, sine�
sine and mixed have been obtained in the form of the
integral formulae which are suitable for numerical calcu-
lations. The analysis of the acoustic power has been per-
formed for the force point excitation and for excitation
located on a fragment of the plate surface. The acous-
tic power of the circular plate located in a �at ba�e has
not been analyzed by means of rigorous analysis in the
case of excitation located on a plate fragment. However,
the solution of this problem, as the limiting case, can be
found on the basis of the results presented in this paper.

2. Analysis assumptions

The acoustic wave is radiated into the three-wall corner
region Ω bounded by the three perfectly rigid in�nite baf-
�es arranged perpendicularly to one another. The sound
source is the vibrating circular plate with clamped edge.
The plate is located on one of the ba�es. The sound
radiation is described in the Cartesian coordinates (cf.
Fig. 1). The vectors r = (x, y, z) and rs = (xs, ys, 0)
are the leading vectors of the �eld point and the source
point, respectively. The analyzed region of the three-
-wall corner can be de�ned as Ω = {0 ≤ x < ∞, 0 ≤
y < ∞, 0 ≤ z < ∞}. The location of the plate's cen-
tre is determined by l = (lx, ly, 0) where |l| > a and
lx, ly > a. Additionally, the local polar coordinates r0, φ0

have been introduced. The origin of that system is lo-
cated at the plate centre and its radial axis is parallel
to the y axis. The existence of the transverse ba�es
makes that the plate vibrations should be considered as
asymmetric even the excitation is axisymmetric. More-
over, it has been assumed that the transverse de�ection
amplitude of the plate's points is small enough to ana-
lyze them as the linear processes. The plate's surface is
excited by the external asymmetric pressure. The in�u-
ence of some factors derived from outside of the three-
-wall region has been neglected. The plate's material is
assumed to be homogeneous and isotropic. The sound
waves are propagated into the homogeneous and loss-
less light �uid medium. It has been assumed that the
analyzed processes are time-harmonic according to the
following function: exp(− iωt), where ω is the frequency
and i2 = −1. The acoustic potential satis�es the homo-
geneous Helmholtz equation into the three-wall corner

region

∆Φ(r) + k20Φ(r) = 0 , (1)

where Φ(r) is the acoustic potential, k0 = 2π/λ denotes
the acoustic wavenumber, λ is the acoustic wavelength
and ∆ = ∂2/∂x2+∂2/∂y2+∂2/∂z2. Moreover, the Neu-
mann boundary conditions are satis�ed at SΩ :

∂Φ(r)

∂x

∣∣∣∣
x=0

=
∂Φ(r)

∂y

∣∣∣∣
y=0

= 0 ,

∂Φ(r)

∂z

∣∣∣∣
z=0

=

{
−v(r0, φ0) on the plate's surface,

0 otherwise.
(2)

The solution of Eq. (1) for the whole region Ω can be
obtained after making use of the Sommerfeld radiation
conditions

lim
r→∞

Φ(r) = 0 , lim
r→∞

r

[
∂Φ(r)

∂r
+ ik0Φ(r)

]
= 0 , (3)

which describe the sound radiation at the in�nite dis-
tance from the source. The considered problem is the
classical Neumann boundary value problem. The system
of the vibrating source, ba�es, acoustic waves radiated
into the medium will be further referred to as the vibro-
acoustic system.

Fig. 1. The three-wall corner region Ω and the vibrat-
ing circular plate located in the ba�e z = 0 where
P = (x, y, z) is the acoustic �eld point and Q(x0, y0, 0)
is the source point.

Based on the Kelvin�Voigt theory of a viscoelastic
plate the source vibrations can be described by(

k−4
T ∇4 − 1

)
W (r0, φ0) +

p(r0, φ0)

ρhω2
=
f(r0, φ0)

ρhω2
, (4)

where

k−4
T =

DT

ρhω2
, DT = DE(1− iωη̄). (5)

W (r0, φ0) is the transverse de�ection amplitude of the
plate points, p(r0, φ0) denotes the acoustic pressure am-
plitude on the plate surface, f(r0, φ0) is the external ex-
citation, ρ, h are the density of the plate material and
the plate thickness, respectively, DE = Eh3/

[
12(1− ν2)

]
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denotes the plate's bending sti�ness, E, ν are the plate
Young modulus and the plate Poisson ratio, respectively,
η̄ is the plate's internal attenuation factor [7, 20].
The solution of the equation of motion (4) can be pre-

sented in the form of double in�nite series as follows [20]:

W (r0, φ0) =
∞∑

m=0

∞∑
n=1

[
c(c)m,nW

(c)
m,n(r0, φ0)

+ c(s)m,nW
(s)
m,n(r0, φ0)

]
, (6)

where W
(c)
m,n(r0, φ0),W

(s)
m,n(r0, φ0) for m = 0, 1, 2, . . .,

n = 1, 2, 3, . . . constitute the complete eigenfunctions sys-
tem. The eigenfunctions, in the case of the considered
source, take the form of{

W
(c)
m,n(r0, φ0)

W
(s)
m,n(r0, φ0)

}
=Wm,n(r0)

{
cosmφ0

sinmφ0

}
,

Wm,n(r0) =

√
εm√

2Jm(βm,n)

×
[
Jm(km,nr0)−

Jm(βm,n)

Im(βm,n)
Im(km,nr0)

]
, (7)

where εm = 1 for m = 0, εm = 2 for m > 0, k2m,n =

ωm,n

√
ρh/DE, ωm,n is the eigenfrequency of the mode

(m,n), βm,n = km,na denotes the eigenvalue derived
from the frequency equation Jm+1(βm,n)Im(βm,n) +
Jm(βm,n)Im+1(βm,n) = 0, a is the plate's radius,

c
(c)
m,n, c

(s)
m,n ∈ C are constants which have to be found

to solve the equation of motion (cf. [8, 21]). The eigen-
functions (7) satisfy the homogeneous equation of motion
[22, 23](

k−4
m,n∇4 − 1

){ W
(c)
m,n(r0, φ0)

W
(s)
m,n(r0, φ0)

}
= 0 (8)

and have been normalized according to the following re-
lation [20]:∫ a

0

∫ 2π

0

{
W

(c)
m,n(r0, φ0)

W
(s)
m,n(r0, φ0)

}{
W

(c)
k,l (r0, φ0)

W
(s)
k,l (r0, φ0)

}
× r0dr0dφ0 = Sδm,kδn,l, (9)

where S = πa2 is the plate's area, and δm,n denotes
the Kronecker delta. Applying that the vibration veloc-
ity amplitude of the plate points is equal to v(r0, φ0) =
− iωW (r0, φ0) and making use of Eq. (6) yields

v(r0, φ0) =

∞∑
m=0

∞∑
n=1

ω

ωm,n

[
c(c)m,nv

(c)
m,n(r0, φ0)

+ c(s)m,nv
(s)
m,n(r0, φ0)

]
, (10)

where{
v
(c)
m,n(r0, φ0)

v
(s)
m,n(r0, φ0)

}
= vm,n(r0)

{
cosmφ0

sinmφ0

}
,

vm,n(r0) = − iωm,nWm,n(r0). (11)

The constants c
(c)
m,n and c

(s)
m,n are necessary to obtain the

transverse de�ection and vibration velocity of the plate
points. They depend on the external surface excitation
and on the plate's internal attenuation factor. The values
of these constants will be found on the basis of equations
system which will be later presented in this paper.

3. Sound pressure

The sound pressure can be presented by means of the
Green function as follows [24]:

p(r) = − ik0ρ0cΦ(r)

= − ik0ρ0c

∫
S

v(rs)G(r|rs)dS , (12)

where G(r|rs) is the Green function, c is the sound veloc-
ity in the medium, ρ0 denotes the medium density. Since
the ba�es are perfectly rigid the integration in above for-
mula can be performed over the source surface, only. The
Green function representing the solution of the Neumann
boundary value problem for the region of the three-wall
corner can be written in the form of (cf. [15, 16])

G(r|rs) =
4i

π2

∫ ∞

ξ=0

∫ ∞

η=0

cos ξx cos ξxs cos ηy cos ηys

× exp(iγz)
dξdη

γ
, (13)

where γ2 = k20 − ξ2 − η2 and ξ, η, γ are the Cartesian co-
ordinates of the wavevector. The transformation of the
global coordinates into their local counterparts has been
introduced (cf. Fig. 1) [17]:

xs = lx + r0 cosφ0 , ys = ly + r0 sinφ0 . (14)

Inserting series (10) into Eq. (12) and applying Eqs. (13)
and (14) yields the sound pressure in the form of the se-
ries of the appropriate modal components.

p(r) =
∞∑

m=0

∞∑
n=1

ω

ωm,n

[
c(c)m,np

(c)
m,n(r) + c(s)m,np

(s)
m,n(r)

]
,

(15)
where{

p
(c)
m,n(r)

p
(s)
m,n(r)

}

= − ik0ρ0c

∫
S

{
v
(c)
m,n(r0, φ0)

v
(s)
m,n(r0, φ0)

}
G(r|rs)dS

=
4k0ρ0ca

2

π

∫ ∞

0

∫ ∞

0

exp(iγz) cos ξx cos ηy

×

{
M

(c)
m,n(ξ, η)

M
(s)
m,n(ξ, η)

}
dξdη

γ
, (16)
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{
M

(c)
m,n(ξ, η)

M
(s)
m,n(ξ, η)

}
=

− iωm,n

S

∫ a

0

Wm,n(r0)

×

{
F

(c)
m (ξ, η, r0)

F
(s)
m (ξ, η, r0)

}
r0dr0 , (17)

{
F

(c)
m (ξ, η, r0)

F
(s)
m (ξ, η, r0)

}
=

∫ 2π

0

cos(ξ(lx + r0 cosφ0))

× cos(η(ly + r0 sinφ0))

{
cosmφ0

sinmφ0

}
dφ0 . (18)

After making use of the transformation

ξ = k0τ cosα , η = k0τ sinα , γ2 = k20
(
1− τ2

)
,

(19)
Eq. (18) can be expressed as{

F
(c)
m (τ, α, r0)

F
(s)
m (τ, α, r0)

}
= 2π

×

{
cos(k0τ ly sinα) cos(k0τ lx cosα+mπ/2) cosmα

− sin(k0τ ly sinα) sin(k0τ lx cosα+mπ/2) sinmα

}
×Jm(k0τr0). (20)

Inserting Eq. (20) into Eq. (17) and applying the fre-
quency equation results in{

M
(c)
m,n(τ, α)

M
(s)
m,n(τ, α)

}
= −4iωm,n

√
εm

×

{
cos(k0τ ly sinα) cos(k0τ lx cosα+mπ/2) cosmα

− sin(k0τ ly sinα) sin(k0τ lx cosα+mπ/2) sinmα

}
×ψm,n(τ) , (21)

where

ψm,n(τ) =
b2m,n√
2β

αm,nbm,nJm(βτ)− τJm+1(βτ)

b4m,n − τ4
(22)

and αm,n = Jm+1(βm,n)/Jm(βm,n), bm,n = βm,n/β,
β = k0a. After changing the coordinates in Eq. (16)
according to relations (19), the integral formulations of
the sound power modal quantities can be written as{

p
(c)
m,n(r)

p
(s)
m,n(r)

}
=

4k20ρ0ca
2

π

∫ ∞

0

∫ π/2

0

exp(iγz)

× cos ξx cos ηy

{
M

(c)
m,n(τ, α)

M
(s)
m,n(τ, α)

}
τ dτ dα√
1− τ2

. (23)

Series (15) together with expressions (23) describes the
sound power distribution for the three-wall corner region
and can be used for obtaining the acoustic power.

4. The acoustic power, the acoustic impedance

modal coe�cients

The time-averaged acoustic power of the vibrating
plate can be obtained on the basis of the formula [24, 25]

Π =
1

2

∫
S′
p(r)v∗(r)dS′ , (24)

where S′ is the surface enclosing the sound source,
v∗(r) ≡ v∗(r, φ) denotes the conjugate value of v(r, φ)
given by Eq. (10) and r = (x, y, 0). Applying the
impedance approach it has been assumed that the surface
S′ is located directly above the vibrating plate surface.
Some medium particles located on the surface S′ vibrate
at the same velocity v(r) as the plate. The conjugate
value can be written as

v∗(r0, φ0) =
∞∑

m=0

∞∑
n=1

ω

ωm,n

[
c∗(c)m,nv

∗(c)
m,n(r0, φ0)

+ c∗(s)m,nv
∗(s)
m,n(r0, φ0)

]
, (25){

v
∗(c)
m,n(r0, φ0)

v
∗(s)
m,n(r0, φ0)

}
= iωm,nWm,n(r0)

{
cosmφ0

sinmφ0

}
.

(26)

Using Eqs. (25) and (15), the acoustic power can be
expressed in the form of the series modal components
(cf. [19]):

Π =
∞∑

m=0

∞∑
n=1

∞∑
k=0

∞∑
l=1

ω2

ωm,nωk,l

[
c(c)m,nc

∗(c)
k,l Π

(c,c)
m,n;k,l

+ c(c)m,nc
∗(s)
k,l Π

(c,s)
m,n;k,l + c(s)m,nc

∗(c)
k,l Π

(s,c)
m,n;k,l

+ c(s)m,nc
∗(s)
k,l Π

(s,s)
m,n;k,l

]
, (27)

where the modal coe�cient of the acoustic power describ-
ing the interaction of cosine modes and sine modes have
been de�ned as

Π
(i,j)
m,n;k,l =

1

2

∫
S′
p(i)m,n(r)v

∗(j)
k,l (r)dS′ (28)

and i, j ∈ {c, s}.

The transformation of the global coordinates of a
�eld point into their local polar counterparts has been
introduced

x = lx + r0 cosφ0 , y = ly + r0 sinφ0 .

Based on the above relations and Eq. (23), the acoustic
power modal components (28) can be formulated in the
following form:

Π
(i,j)
m,n;k,l = 2k20ρ0ca

4

×
∫ ∞

0

∫ π/2

0

M
(i)
m,n(τ, α)M

(j)∗

k,l (τ, α)τ dτ dα
√
1− τ2

, (29)

where i, j ∈ {c, s}{
M

(c)∗

k,l (τ, α)

M
(s)∗

k,l (τ, α)

}
=

1

S

∫ a

0

∫ 2π

0

{
v
(c)∗

k,l (r0, φ0)

v
(s)∗

k,l (r0, φ0)

}
× cos(k0τ(lx + r0 cosφ0) cosα)
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× cos(k0τ(ly + r0 sinφ0) sinα)r0dr0dφ0

= −

{
M

(c)
k,l (τ, α)

M
(s)
k,l (τ, α)

}
. (30)

Normalizing the quantities from Eq. (29) by means of
the following reference value:

Π
(Re f.)
m,n;k,l =

√
Π

(Re f.)
m,n Π

(Re f.)
k,l =

1

2
Sρ0cωm,nωk,l , (31a)

Π (Re f.)
m,n =

1

2

∫
S

∣∣∣v(c)m,n(r, φ)
∣∣∣2dS (31b)

gives the modal coe�cients of the acoustic
impedance [24]:

ζ
(i,j)
m,n;k,l =

Π
(i,j)
m,n;k,l

Π
(Re f.)
m,n,k,l

= 4β2√εmεk

×
∫ ∞

0

ϕ
(i,j)
m,k (τ)ψm,n(τ)ψk,l(τ)τ dτ√

1− τ2
, (32)

where i, j ∈ {c, s} and

ϕ
(c,c)
m,k (τ) =

16

π

∫ π/2

0

cos2(k0τ ly sinα)

× cos(k0τ lx cosα+mπ/2)

× cos(k0τ lx cosα+ kπ/2) cosmα cos kαdα , (33a)

ϕ
(c,s)
m,k (τ) = − 8

π

∫ π/2

0

sin(2k0τ ly sinα)

× cos(k0τ lx cosα+mπ/2)

× sin(k0τ lx cosα+ kπ/2) cosmα sin kαdα , (33b)

ϕ
(s,s)
m,k (τ) =

16

π

∫ π/2

0

sin2(k0τ ly sinα)

× sin(k0τ lx cosα+mπ/2)

× sin(k0τ lx cosα+ kπ/2) sinmα sin kαdα , (33c)

ϕ
(s,c)
m,k (τ) = ϕ

(c,s)
k,m (τ) . (33d)

Analysis of Eqs. (32) and (33) leads to the following
relations:

ζ
(c,c)
m,n;k,l = ζ

(c,c)
m,l;k,n , ζ

(s,s)
m,n;k,l = ζ

(s,s)
m,l;k,n ,

ζ
(c,c)
m,n;k,l = ζ

(c,c)
k,n;m,l , ζ

(s,s)
m,n;k,l = ζ

(s,s)
k,n;m,l , (34a)

ζ
(c,s)
m,n;k,l = ζ

(c,s)
m,l;k,n , ζ

(s,c)
m,n;k,l = ζ

(s,c)
m,l;k,n ,

ζ
(c,s)
m,n;k,l = ζ

(s,c)
k,n;m,l , (34b)

ζ
(s,s)
0,n;k,l = ζ

(s,s)
m,n;0,l = ζ

(c,s)
m,n;0,l = ζ

(s,c)
0,n;k,l = 0 , (34c)

which can be used to reduce the numerical calculation

time. After performing the integration, Eqs. (33) can be
written as{

ϕ
(c,c)
m,k (τ)

ϕ
(s,s)
m,k (τ)

}
= (−1)k+m

[
± Jk+m(2βLτ)

× cos((k +m)φL) + Jk+m(2βLxτ)
]

+(−1)k
[
Jk−m(2βLτ) cos((k −m)φL)

± Jk−m(2βLxτ)
]
+ cos((k −m)π/2)

[
Jk+m(2βLyτ)

± Jk−m(2βLyτ)
]
+ δm,k

{
2/εm
sgn(m)

}
, (35a)

ϕ
(c,s)
m,k (τ) = (−1)k+mJk+m(2βLτ) sin((k +m)φL)

+ (−1)kJk−m(2βLτ) sin((k −m)φL)

− sin((k −m)π/2)

×
[
Jk+m(2βLyτ) + Jk−m(2βLyτ)

]
, (35b)

ϕ
(s,c)
m,k (τ) = ϕ

(c,s)
k,m (τ) , (35c)

where L =
√
L2
x + L2

y = |l|/a > 1, Lx = lx/a > 1,

Ly = ly/a > 1, φL = arctan(Ly/Lx) is the angle between
the vector l and the x-axis (cf. Fig. 1), sgn(·) denotes
the signum function which is equal to 1, 0, −1 where
its argument is positive, negative and equal to zero,
respectively. All the components in Eq. (35) containing
the Bessel function result from the existence of two
additional ba�es.
Making use of Eqs. (27) and (32), the acoustic power

can be presented as the fourfold series of modal coe�-
cients of the acoustic impedance

Π =
1

2
Sρ0cω

2
∞∑

m=0

∞∑
n=1

∞∑
k=0

∞∑
l=1

[
c(c)m,nc

∗(c)
k,l ζ

(c,c)
m,n;k,l

+ c(c)m,nc
∗(s)
k,l ζ

(c,s)
m,n;k,l

+ c(s)m,nc
∗(c)
k,l ζ

(s,c)
m,n;k,l + c(s)m,nc

∗(s)
k,l ζ

(s,s)
m,n;k,l

]
. (36)

Applying the above formula requires reducing the in�nite
series to a �nite number of its terms. Consequently, the
in�uence of the higher modes of the plate on its vibra-
tions is neglected. Therefore, the results obtained are the
approximation of the real life situation.

5. Solution to the equation of forced vibrations

Finding a solution to the equation of motion (4) is

equivalent to calculating the constants c
(c)
m,n, c

(s)
m,n occur-

ring in the eigenfunctions series (7) for known time-
-harmonic excitation. Inserting the series (6) into the
equation of motion and using Eq. (8) gives
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∞∑
m=0

∞∑
n=1

(
k4m,n

k4T
− 1

)[
c(c)m,nW

(c)
m,n(r0, φ0)

+ c(s)m,nW
(s)
m,n(r0, φ0)

]
+
p(r0, φ0)

ρhω2
=
f(r0, φ0)

ρhω2
. (37)

Further applying the standardization condition (9) and
the following relation∫ a

0

∫ 2π

0

W (c)
m,n(r0, φ0)W

(s)
k,l (r0, φ0)r0dr0dφ0 = 0

yields{
c
(c)
m,n

c
(s)
m,n

}(
k4m,n

k4T
− 1

)
+

1

ρhω2

{
P

(c)
m,n

P
(s)
m,n

}

=
1

ρhω2

{
f
(c)
m,n

f
(s)
m,n

}
, (38)

where{
P

(c)
m,n

P
(s)
m,n

}
=

1

S

∫
S

p(r0, φ0)

{
W

(c)
m,n(r0, φ0)

W
(s)
m,n(r0, φ0)

}
dS ,

(39){
f
(c)
m,n

f
(s)
m,n

}
=

1

S

∫
S

f(r0, φ0)

{
W

(c)
m,n(r0, φ0)

W
(s)
m,n(r0, φ0)

}
dS .

(40)

Taking into account Eqs. (15), (28) and (32) the equa-
tions system (38) can be presented as{

c
(c)
m,n

c
(s)
m,n

}(
k4m,n

k4T
− 1

)
− iε0

ω0,1

ω

×
∞∑
k=0

∞∑
l=1

(
c
(c)
k,l

{
ζ
(c,c)
k,l;m,n

ζ
(c,s)
k,l;m,n

}
+ c

(s)
k,l

{
ζ
(s,c)
k,l;m,n

ζ
(s,s)
k,l;m,n

})

=
1

ρhω2

{
f
(c)
m,n

f
(s)
m,n

}
, (41)

where ε0 = ρ0c/ρhω0,1 is the dimensionless acoustic at-
tenuation factor. The solution of the above equations

system provides the values of constants c
(c)
m,n, c

(s)
m,n and

enables to obtain the solution to equation of motion of
the analyzed sound source. On the basis of Eqs. (34c)

and (41), it can be deduced that c
(s)
0,n = 0 for n = 1, 2, 3.

The solutions of Eqs. (41) will be used to calculate the
acoustic power on the basis of Eqs. (32) and (36).

6. Numerical analysis

The radiation acoustic power of the considered plate
has been analyzed for the three di�erent distributions of
surface excitation

f1(r0, φ0) =
F0

r0
δ(r0 − r̄)δ(φ0 − φ̄), (42a)

f2(r0, φ0) =

{
f0, 0 ≤ r0 ≤ ā ≤ a,

0, 0 < ā < r0 ≤ a,
(42b)

f3(r0, φ0) =


f0, r̄ −∆r̄/2 ≤ r0 ≤ r̄ +∆r̄/2 and

φ̄−∆φ̄/2 ≤ φ0 ≤ φ̄+∆φ̄/2,

0, otherwise, (42c)

where δ(·) is the Dirac delta, f0 [Pa] is the pressure am-
plitude, F0 = f0S0 [N] is the force amplitude, f1(r0, φ0)
is the plate point excitation located at the point deter-
mined by the polar coordinates (r̄, φ̄), f2(r0, φ0) denotes
the axisymmetric uniform excitation applied to the sur-
face of wheel of radius ā =

√
S0/π, f3(r0, φ0) is the asym-

metric uniform excitation applied to the plate's segment
of area r̄∆r̄∆φ̄ with its characteristic point (r̄, φ̄) (cf.
Fig. 2), ∆r̄ =

√
S0, ∆φ̄ =

√
S0/r̄, S0 ≪ S is the area of

surface to which the excitation is applied.

Fig. 2. The location and dimensions of the plate's ex-
citation segment.

The parameters describing the excitations from
Eqs. (42) have been chosen to satisfy the following con-
ditions:

r̄∆φ̄ = ∆r̄ , F0 =

∫
S

f2(r0, φ0)dS , (43)

which mean that the plate segment is similar to a square
when it is located far from the plate's centre (cf. Fig. 2),
and the total force applied to the plate surface is the same
for all the excitations. The conditions (43) have been in-
troduced to compare the radiation acoustic power in the
case of excitations (42) and can be satis�ed for excita-
tions (42c) when r̄ ∈ [r̄min, r̄max] where

r̄min =
√
S0/2 , r̄max = a−

√
S0/2 . (44)

The above coordinates determine the most extreme lo-
cations of the plate segment. The excitations given by
Eqs. (42b) and (42c) have been chosen for practical rea-
sons. They can be useful for modelling of some excita-
tions realised by means of piezoelectric elements located
on the plate's surface. The time-harmonic signal applied
to the piezoelectric elements causes the changes in their
shape and consequently in the plate's vibrations. The
point's excitation de�ned by Eq. (42a) is described by
the Dirac delta which simpli�es the theoretical analysis
of the problem. Therefore, this excitation can be used for
modelling the excitations de�ned by Eqs. (42b) and (42c)
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under some conditions that will be discussed. This allows
to simplify the analysis of the acoustic power. Inserting
Eqs. (42) into Eqs. (40) yields{

f
(c)
1,m,n

f
(s)
1,m,n

}
= F0

{
W

(c)
m,n(r̄, φ̄)

W
(s)
m,n(r̄, φ̄)

}
, (45)

{
f
(c)
2,m,n

f
(s)
2,m,n

}
= f0

{
δ0,m
0

}
w̄(ā) , (46)

(47a)
f
(c)
3,m,n =

f0
2π


∆φ̄, m = 0,

(1/m)[sin(m(φ̄+∆φ̄/2))

− sin(m(φ̄−∆φ̄/2))], m ≥ 1,

f
(s)
3,m,n =

f0
2π


0, m = 0,

−(1/m)[cos(m(φ̄+∆φ̄))

− cos(m(φ̄−∆φ̄)], m ≥ 1,

(47b)

where

w̄(b) =
2

a2

∫ b

0

Wm,n(r)rdr , 0 < b ≤ a . (48)

The total acoustic power can be obtained taking into ac-
count the �nite number of terms in the in�nite series from
Eq. (36). Consequently, the �nite number of the plate's
modes can be applied which makes that the obtained re-
sults will be correct only for the upper bounded frequen-
cies. The calculations of the acoustic power require tak-
ing into account all the modes whose eigenfrequencies are
smaller than the excitation frequency. It is also necessary
to apply some additional modes whose eigenfrequencies
are greater than the excitation frequency. The total num-
ber of the modes applied is dependent on the accepted
accuracy and considered frequency range. Equation (36)
represents the acoustic power. It contains (2M̄ + 1)2N̄2

modal coe�cients of the acoustic impedance in the case
of using all the modes (m,n) where m ≤ M̄ , n ≤ N̄ and
M̄, N̄ ∈ N. The relations (34) allow to reduce the number
of modal coe�cients to N̄(N̄ +1)(M̄ +1)(2M̄ +1)/2 and
to shorten the time necessary for numerical calculations.
The computational complexity in Eq. (36) depends on
the squares of numbers M̄, N̄ which determine the maxi-
mum number of nodal diameters and nodal circles for the
applied modes. The acoustic power has been calculated
taking into account the nine lowest modes (m,n), where
m = 0, 1, 2 and n = 1, 2, 3, in the numerical analysis pre-
sented. All the values of parameters necessary for the
analysis are presented in Table.

The acoustic power has been analyzed in the case of the
excitations given by Eqs. (42). The axisymmetric uni-
form excitation (42b) can be approximated by the point
excitation from (42a) in the case of r̄ = 0. It is possible to
approximate the excitations from Eq. (42c) by the point
excitation applied to the plate's point of the polar coor-
dinates (r̄, φ̄). This leads to some approximation errors.
The relative errors of modulus |Π | and cosine cosφΠ of
phase of the acoustic power Π has been determined. The
errors have been calculated on the basis of the following

TABLE

The values of the parameters describing the analyzed
vibroacoustic system. It has been assumed that the plate
is steel and the medium is air.

Parameter Value

plate radius a = 0.3 m

sound velocity in the medium c = 340 m/s

Young's modulus E = 205× 109 Pa

plate thickness h = 1× 10−3 m

plate centre relative coordinate Lx = 1.5, Ly = 2

plate's internal attenuation factor η̄ = 10−4 s

Poisson's ratio ν = 0.3

plate density ρ = 7700 kg/m3

medium density ρ0 = 1.293 kg/m3

relation:

E =
|Wexact −W |

|Wexact|
, (49)

where W is the approximate value, Wexact is the exact
value.
The in�uence of parameter r̄ on the acoustic power

has been also examined. This parameter determines the
distance between the plate's centre and the characteris-
tic point of the plate segment (cf. Fig. 2). The analysis
has been performed for some sample frequencies and the
excitation given by Eq. (42c). The value of the acous-
tic power modulus varies signi�cantly with frequency.
Therefore, the acoustic power modulus has been normal-
ized by Πmax = maxr̄/a∈[0,1] |Π |. It enables presenting
several curves in Fig. 3a which shows that the acoustic
power modulus decreases signi�cantly when the param-
eter r̄ grows and is negligibly small in comparison with
Πmax when the excited segment of the plate is located
directly at the plate's edge, i.e. when r̄ = r̄max. The
relative error resulting from applying the point excita-
tion (42a) instead of the true excitation from Eq. (42c)
increases signi�cantly when r̄→ r̄max (Fig. 3b).

Fig. 3. The normalized acoustic power modulus for ex-
citation (42c) (a) and the relative error resulting from
the approximation of excitation (42c) by point excita-
tion (42a) (b). It has been assumed: φ̄ = π/4 and
q = 0.001. Key: solid line � ω/ω0,1 = 0.5(Πmax =
0.025Π0), dashed line � ω/ω0,1 = 2 (Πmax = 3.5Π0),
dashed�dotted line � ω/ω0,1 = 8 (Πmax = 0.14Π0).

The acoustic power has also been calculated for the
di�erent values of the quotient S0/S ∈ [0.001, 0.01]. The
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acoustic power modulus and phase cosine in the case of
the excitations given by Eqs. (42a) and (42c) have been
analyzed. The results for both excitations are similar and
therefore only the acoustic power in the case of point ex-
citation have been illustrated. The normalized modulus
and phase cosine of acoustic power have been presented in
Fig. 4a and b in the case of excitation given by Eq. (42a).
The acoustic power modulus has been normalized by

Π0 =
ρ0cF

2
0

ρ2h2a2ω2
0,1

, (50)

which ensures that the obtained results are valid for any
value of the exciting force amplitude F0. The relative
approximation errors of the modulus and phase cosine
of acoustic power have been presented in Fig. 4c and d.
Figure 4 shows all the quantities as the functions of the
normalized frequency ω/ω0,1 where ω0,1 = 177.24 Hz for
the values of the parameters shown in Table. Figure 4c
and d shows that the relative errors are constant for the
frequencies ω < ω0,1 and for the �xed quotient S0/S.
The only exception appears within the narrow frequency
range around the �rst eigenfrequency where the relative
error of the phase cosine is very small. The values of
analyzed errors increase with frequency when ω > ω0,1.
This fact results from the increase of the relative size of
the plate's segment in comparison with the acoustic wave
length. In the case of ω < ω0,1, the approximation er-
rors are less than 0.7% when S0/S = 0.002 and does not
exceed 0.35% when S0/S = 0.001.

Fig. 4. The acoustic power for point excitation (42a)
and the relative errors resulting from the approximation
of excitation (42c) by point excitation (42a): (a) nor-
malized modulus, (b) phase cosine, (c) modulus relative
errors, (d) phase cosine relative errors. Key: solid line
� q = 0.001, dashed line � q = 0.002, dashed-dotted
line � q = 0.004, dotted line � q = 0.01. It has been
assumed: r̄ = 0.5a, φ̄ = π/4.

The normalized modulus and the phase cosine of acous-
tic power have been presented in Fig. 5a and b together
with their relative approximation errors. The analysis
has been performed for the point excitation given by
Eq. (42a) and for some sample values of parameter r̄
including the case when the excited plate's segment is
located in the smallest possible distance from the plate's

centre i.e. r̄ = r̄min. Since the acoustic power achieves
very small value when the excited plate segment is lo-
cated directly at the plate's edge, this case has not been
analyzed. The relative approximation error does not ex-
ceed 0.25% for ω < ω0,1 and S0/S = 0.001. The excita-
tion applied to the plate's segment de�ned by Eq. (42c)
can be approximated by the point excitation with an
approximation error less than 0.36% in the case when
S0/S = 0.001, ω < ω0,1 and r̄ ∈ (0, 0.75a] (Fig. 5c,d).

Fig. 5. The acoustic power for excitation (42a) and
the relative errors resulting from the approximation of
excitations (42b) and (42c) by point excitation (42a)
(a) normalized modulus, (b) phase cosine, (c) modulus
relative errors, and (d) phase cosine relative errors. Key:
solid line � r̄ = 0, dashed line � r̄ = 0.03a, dashed-
-dotted line � r̄ = 0.25a, dotted line - r̄ = 0.75a. It has
been assumed: φ̄ = π/4, q = 0.001.

This is obvious that the smaller area S0 to which ex-
citation is applied the smaller the approximation error
resulting from using the point excitation instead of ex-
citations (42b) or (42c). However such approximation is
useful for practical reason and therefore this error has
been shown in Fig. 6 as a function of the quotient S0/S.
This �gure con�rms the above conclusion. The analysis
has been performed for the di�erent locations of the ex-
cited plate's segment and for some sample frequencies.
In the case of ω > ω0,1, the curves presented in Fig. 6b
concern the frequencies for which the maximum values
of error are observed. Figure 6 shows that the presented
error varies linearly with S0/S when it is depicted on the
full logarithmic scale.
The acoustic attenuation can be neglected under some

conditions, by assuming ε0 = 0 in equations system (41),
to obtain simple formulae describing the values of con-

stants c
(c)
m,n, c

(s)
m,n and to simplify the numerical calcula-

tion of the acoustic power. The negligence of the acoustic
attenuation causes, however, an approximation error of
value depending on the normalized excitation frequency
ω/ω0,1. The relative approximation error of the modu-
lus and the phase cosine of the acoustic power have been
presented in Fig. 7. It can be noticed that the modulus
error can assume signi�cant values whereas the error of
the phase is negligible. Both errors grow rapidly with
frequency when ω < ω0,1. The negligence of the acoustic
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Fig. 6. The relative errors of the acoustic power mod-
ulus |Π |, for φ̄ = π/4, resulting from the approximation
of excitation (42b) and (42c) by the point excitation
(42a): (a) ω/ω0,1 = 0.5, (b) r̄ = 0.25a. Key: (a) solid
line � r̄ = 0, dashed line � r̄ = 0.1a, dashed-dotted
line � r̄ = 0.75a, (b) solid line � ω/ω0,1 = 0.1, dashed
line � ω/ω0,1 = 3, dashed-dotted line � ω/ω0,1 = 4.

attenuation causes the relative error of the acoustic power
modulus less than 1% only within the low frequency
range for ω < 0.3ω0,1 which means that for frequencies
higher than 0.3ω0,1 the acoustic attenuation must be in-
cluded to assure the desirable computation accuracy. If
the 10% error is acceptable then the acoustic attenuation
can be neglected within the entire frequency band. Addi-
tionally, the error achieves some signi�cant values at the
resonance frequencies.

Fig. 7. The relative approximation errors of the acous-
tic power resulting from the negligence of the acous-
tic attenuation for the excitation given by Eq. (42a),
r̄ = 0.5a and φ̄ = π/4. Key: solid line � the modulus
errors, dashed line � the phase cosine errors.

It is essential to determine the in�uence of the trans-
verse ba�es on the acoustic power of the considered
sound source. The following quantity has been intro-
duced for this purpose:

δΠ =
|Π | −

∣∣Π̄ ∣∣∣∣Π̄ ∣∣ , (51)

where Π̄ is given in Eq. (A.1) and denotes the acoustic
power of a clamped circular plate located in a �at baf-
�e. This quantity is the normalized measure of the in�u-
ence of transverse ba�es on the acoustic power modulus.
The case when δΠ > 0 means an increase in the mod-
ulus |Π | resulting from the existence of the additional
ba�es and the case when δΠ < 0 indicates the modu-
lus reduction. The quantities δΠ and Π̄ have been pre-

sented in Fig. 8 as functions of the normalized frequency
ω/ω0,1. The quantity δΠ has been shown for the di�er-
ent distances between the plate's centre and the trans-
verse ba�es. The point excitation given in Eq. (42a)
has been assumed. Figure 8 shows that the transverse
ba�es cause an increase in the acoustic power modulus
for frequencies ω < ω0,1. It can also be noticed, for these
frequencies, that the ba�es in�uence grows when the dis-
tance between the plate's centre and the ba�es decreases
i.e. when L→ 1. The greater in�uence is observed for
ω < ω0,1. In the case of ω > ω0,1, the in�uence decreases
with an increase in frequency. This is due to the growth
of quotients lx/λ and ly/λ which means that the distance
between the source and ba�es grows in comparison with
the wavelength. The in�uence depends strongly on fre-
quency when ω/ω0,1 ∈ (0.9, 1.0). The phase depends
very weakly on the presence of the ba�es within the en-
tire frequency range and for any values of quotients lx/λ
and ly/λ.

Fig. 8. The in�uence of the transverse ba�es on the
acoustic power for the excitation given by Eq. (42a),
r̄ = 0.5a and φ̄ = π/4: (a) the quantity δΠ de�ned
by Eq. (51), (b) the normalized modulus of the acoustic
power radiated by the plate located in a �at ba�e. Key:
solid line � Lx = Ly = 1; dashed line � Lx = Ly =
1.5, dashed-dotted line � Lx = Ly = 2, dotted line �
Lx = Ly = 3.

Fig. 9. The normalized modulus of the acoustic power
|Π /Π̄ | for the excitation given by Eq. (42a), r̄ =
0.5a, φ̄ = π/4 and Lx = Ly. Key: solid line �
ω/ω0,1 = 0.1 (Π̄ = 27.8 × 10−6Π0); dashed line �
ω/ω0,1 = 0.5 (Π̄ = 0.6 × 10−2Π0), dash-dotted line �
ω/ω0,1 = 0.8 (Π̄ = 0.11×Π0).

The normalized quantity |Π /Π̄ |, as a measure of the
ba�es in�uence on the acoustic power, has been included.
This quantity has been shown in Fig. 9 as a function of
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the distance between plate's centre and the transverse
ba�es in the case when Lx = Ly. The analysis has been
performed for some sample frequencies less than ω0,1. It
has been shown that |Π /Π̄ | assumes some signi�cant val-
ues for Lx, Ly < 31. It grows with the frequency when
Lx, Ly < 2.5. This fact results from the interference of
the waves derived directly from the plate and the waves
re�ected from the ba�es. This interference is signi�cant
when the plate is located in the vicinity of the ba�es.
Moreover, the ba�es in�uence decreases when the dis-
tances Lx and Ly between the plate's centre and the baf-
�es grow which is in agreement with expectations. The
ba�es in�uence decreases the faster the higher frequency.

7. Concluding remarks

The theoretical and numerical analyses have been
carried out leading to the conclusion that the addi-
tional transverse ba�es in�uence signi�cantly the radi-
ated acoustic power within the low frequency range. Con-
sequently, this in�uence cannot be neglected for the low
frequencies which is especially important in actual ac-
tive noise and vibration control problems. The in�uence
of the transverse ba�es decreases when the vibration fre-
quency grows. Moreover, it has also been noticed that the
greatest in�uence of the ba�es on the acoustic power is
when the vibrating source is located close to the ba�es.
When the distance between the source and the ba�es
increases the ba�es in�uence decreases. The obtained
results indicate some situations for which the ba�es im-
pact should be taken into account and some situations
for which that impact can be neglected. The in�uence
of a uniform excitation located on the plate fragment of
the small area can be closely approximated by the point
force excitation in the case of the low frequency range.
That fact enables to simplify theoretical calculation and
reduces the numerical calculation time. Therefore, mod-
elling uniform excitations by means of the point force
excitation can be used to improve algorithms employed
in the case of noise control. The acoustic power achieves
its maximum when the excited segment of the plate is
located near the source's centre.

Appendix. The acoustic power of clamped

circular plate located in a �at ba�e

On the basis of Eqs. (32), (35), (36) and (41), the
total acoustic power of clamped circular plate located
in a �at ba�e can be obtained. For this purpose, it
has been assumed that the transverse ba�es are lo-
cated in�nitely far from the plate centre which can be
written as Lx, Ly →∞. Then, applying the relation
limu→∞ Jm̂(u) = 0 for m̂ = 0, 1, 2, . . . (cf. [21]) results in

Π̄ =
1

2
Sρ0cω

2
∞∑

m=0

∞∑
n=1

∞∑
l=1

[
c̄(c)m,nc̄

∗(c)
m,l

+sgn(m)c̄(s)m,nc̄
∗(s)
m,l

]
ζm;n,l , (A.1)

where Π̄ is the acoustic power of the clamped circular
plate located in a �at ba�e and

ζm;n,l = 8β2

∫ ∞

0

ψm,n(τ)ψm,l(τ)τ dτ√
1− τ2

. (A.2)

Constants c̄
(c)
m,n, c̄

(s)
m,n appearing in Eq. (A.1) can be cal-

culated on the basis of the equations system

c̄(c)m,n

(
k4m,n

k4T
− 1

)
− iε0

ω0,1

ω

∞∑
l=1

(
c̄
(c)
m,lζm;n,l

)

=
f
(c)
m,n

ρhω2
,

c̄(s)m,n

(
k4m,n

k4T
− 1

)
− iε0

ω0,1

ω

∞∑
l=1

(
c̄
(s)
m,lsgn(m)ζm;n,l

)

=
f
(s)
m,n

ρhω2
. (A.3)

The quantity ζm;n,l de�ned by Eq. (A.2) is the modal
coe�cient of acoustic impedance of a clamped circular
plate located in a �at ba�e. This coe�cient describes
the interactions of both modes, cosine�cosine and sine�
sine. Moreover, it is worth noticing that in the case of
the quantity the both interacting modes are described by
the same number of nodal diameters. The acoustic power
of the clamped circular plate located in a �at ba�e has
been expressed by the triple series containing the modal
and it is less computationally complex than the quantity
given in Eq. (36) which represents the acoustic power of
the clamped circular plate located at the boundary of the
three-wall corner region.
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