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The analytical examination of mechanical systems in the aspect of their vibro-isolation can be limited to the
construction of a computational system. The analytical description of the adopted appropriate computational
model may be executed with the help of a set of differential equations of the second order, differential equations
with partial derivatives or of both types at the same time. The latest description is associated with the so-called
discrete-continuous systems. It is the most convenient to analyze the vibrations of the linear discrete-continuous
systems in the class of functions generalized with the Fourier method of separation of variables. Until now it was
possible to execute only for a small set of parameters of the system’s structure. In the work the author presents a
computational model that covers all the structural parameters of the system.

PACS: 46.70.De, 46.40.−f

1. Introduction

The results of the analysis of vibrations depend on the
adopted computational system. The computational sys-
tem should be characterized by the following features:
1. it should take into account the essential features of the
physical system in the aspect of vibrations, 2. it should
be simple in its mathematical description, which is es-
sential for the course of the analysis, 3. in the case of the
mathematical description dependent upon two or more
independent variables it is favourable if the variables can
be separated.

Such features are possessed by the discrete-continuous
systems considered in the class of generalized functions.
Fourier’s method brings positive results only for a small
set of the structure parameters. In this work the pre-
sented method of separations of variables is applicable
for all the parameters of the structure.

Vibrations of mechanical systems with distributed pa-
rameters are described by functions dependent upon two
variables: the spatial one and the temporal one. An
analysis of vibrations of this kind of systems can be well
conducted with the Fourier method of separation of vari-
ables. Typical systems with distributed parameters for
which it is appropriate to conduct an analysis with the
method of separation of variables include the longitudi-
nal vibrations of a rod, transverse vibrations of a beam,
torsional vibrations of a shaft and vibrations of discrete-
-continuous systems.

A typical discrete-continuous system is presented in
Fig. 1.

Model in Fig. 1 is equivalent of general physical
discrete-continuous system. Description of the model:
OB — Euler’s beam, freely supported at its ends, whose
length l > 0, 0 < EJ bending rigidity of the beam,

Fig. 1. A model of a discrete-continuous system.

0 < ρF — specific weight, 0 < m0 — mass concentrated
around the point x0 of the beam, in which massless con-
straints with parameters 0 ≤ h, 0 ≤ k are connected
pointwise, 0 ≤ α0 — coefficient of structural damping of
the beam; 0 ≤ m — mass of the material point Ω ; y(t) —
function describing the deviation from the balanced po-
sition of Ω ; u(x, t) — function describing deviation from
the balanced position of the beam particles; f1(x, t) and
f2(t) — functions describing external forces acting on the
system presented in Fig. 1.

Vibrations of the system presented in Fig. 1 are de-
scribed by the following system of equations [1–4]:

EI
∂4u

∂x4
+ Iα0

∂5u

∂x4∂t
+ (m0δx0 + ρF )

∂2u

∂t2

+
[
k (u (x0, t)− y(t)) + h

(
∂u (x0, t)

∂t
− ẏ(t)

)]
δx0

+h1
∂u (x0, t)

∂t
δx0 = f1 (x, t) ,

mÿ + h

(
ẏ(t)− ∂u (x0, t)

∂t

)

+k [y(t)− u (x0, t)] = f2(t) (1)
with the boundary conditions

(981)
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u (0, t) = u (l, t) = 0 ,
∂2u (0, t)

∂x2
=

∂2u (l, t)
∂x2

= 0 (2)

and the initial conditions

u (0, t) = ϕ0(x) ,
∂u (x, 0)

∂t
= ϕ1(x) (3)

where δx0 is the Dirac delta function concentrated in x0.
The system (1), (2), (3) is called the initial-boundary

problem.
All equalities are understood in the distributive sense;

differential coefficients are also understood in the dis-
tributive sense [1, 5]. The mass m0 in x0 represents mass
increase in the neighbourhood of x0 caused by the con-
nection of the constraints with the beam, while h1 is the
change of damping in the neighbourhood of x0.

2. Explanation of the subject under study

The hitherto approach to the solution of the problem
defined in Eqs. (1)–(3) with the method of separation of
variables is successful for the cases

α0 = 0 , h = 0 , h1 = 0 , (4)

α0

E
=

h

k
, h1 = 0 , (5)

when we assume

u(x, t) = X(x)T (t) , y(t) = AT (t) . (6)

For the relation
α0

E
6= h

k
, h1 6= 0 (7)

we shall use the modified method, that is, we shall assume

u(x, t) = X(x)T (t) , y(t) = AS(t) . (8)

The basic goal of the work is to offer a new approach
to the method of separation of variables for the solution
of Eqs. (1), (2) for (6) as well as a model of the solution
of the problem defined in Eqs. (1)–(3).

In order to achieve the main goal of the study we shall
neglect the external forces acting on the system.

To facilitate understanding of the idea of realization of
the main goal, let us quote own problems and the equa-
tion of the function T (t) for (3) and (4). In (3) and (4) we
apply the standard procedure while (6) requires a proof.

The results of the solution of the problem defined in
Eqs. (1), (2) for (3), (4) and (6) are included in the the-
orem:

Theorem

From (1), (2) and (5) for (4) it follows that:

XIV − λ4X =
(

k

ω2
0 − ω2

+ m0

)
ω2

EI
X (x0) δx0 ,

ω2
0 =

k

m
, λ4 =

ρFω2

EI
, (9)

X (x0)
A

=
ω2

0 − ω2

ω2
0

, ωo 6= ω , (10)

X(0) = X(l) = 0 , X ′′(0) = X ′′(l) = 0 , (11)

T̈ + ω2T = 0 . (12)

Equation (9) is obtained from

EIXIV + k (X (x0)−A) δx0

(m0δx0 + ρF ) X
= ω2,

(m0δx0 + ρF )X(x) 6= 0 , x ∈ 〈0, l〉 . (13)

Applying (1) and (13) we obtain (10).

By analogy to (6), for (5) we obtain eigenproblem (9),
(10), (11) and

T̈ +
α0

E
ω2Ṫ + ω2T = 0 . (14)

From (1), (2) and (8), taking into account

h + h1 = k
α0

E
(15)

we obtain eigenproblem (9), (10) and for x ∈ (〈0, l〉 −
{x0})

T̈ +
α0

E
ω2Ṫ + ω2T = 0, (16)

while for x = x0

T̈ +
(

ω2 +
kω2

0

m0 (ω2
0 − ω2)

) (α0

E
Ṫ + T

)

− kω2
0

m0 (ω2
0 − ω2)

(
h

k
Ṡ + S

)
= 0 ,

S̈ + 2αṠ + ω2
0S −

(
1− ω2

ω2
0

) (
2αṪ + ω2

0T
)

= 0 ,

2α =
h

m
. (17)

Further in the work we shall show that the denominator
of (13) is different than zero. Equation (9) is valid for
ω0 6= ω. It issues from the Theorem that the new idea of
applicability expansion of the method of variables sepa-
ration consists in invariance of eigenproblems.

In order to demonstrate (16), (17) and identity of (6)
with (4), we must show

Lemma

A :
X(x0)

A
=

ω2
0 − ω2

ω2
0

, see (10);

T :
kAδx0

(m0δx0 + ρF )X

=

{
kA

m0X(x0)
for x = x0 , m0 > 0 , ρF > 0 ,

0 for x 6= x0 .

Proof: let us set
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kAδx0

(m0δx0 + ρF )X(x)
= a , x = x0 , (18)

kAδx0

(m0δx0 + ρF )X(x)
= b , x 6= x0 , (19)

H (x0, ε) = H (x0 − ε)−H (x0 + ε) , ε > 0 ,

H̃ (x0, ε) = H(0)−H(l)−H (x0, ε) ,

H(ξ) = 1, x > ξ, H(ξ) = 0 , ξ < 0, H(ξ) =
1
2

.

We multiply both sides of (18) by the denominator,
then we multiply H(x0, ε) and ϕ(x), and integrate, ob-
taining

kAϕ (x0) = am0X (x0) ϕ (x0)

+ aρF

∫

R
X(x)H (x0, ε)ϕ (x0) dx .

ϕ ∈ D is a set of trial functions [5].Moving from ε→ 0
we have

kAϕ (x0) = am0X (x0) ϕ (x0)

or
[kA− am0X(x0)] ϕ(x0) = 0 for each ϕ .

From the above and the assumption of the Lemma we
get

a =
kA

m0X (x0)
.

Similarly to (18) we calculate (19), but instead of
H(x0, ε) we use H̃(x0, ε), obtaining

0 = b

∫

R
ρFX(x)H̃(x0, ε)ϕ(x)dx

for every ϕ ∈ D. Hence b = 0 because the integral is dif-
ferent than zero. In a similar way to that in (18) and (19)
we find that

m0X (x0) δx0 + ρFX(x) 6= 0 for x = x0

and for x ∈ (〈0, l〉 − {x0}).
Proof for (6):

Inserting Eq. (7) into the first equation of (1) we obtain

EI
(
T +

α0

E
Ṫ

)
+ (m0δx0 + ρF )XT̈ + kX (x0)

×
(

T +
h + h1

k
Ṫ

)
δx0 − kA

(
S +

h

k
Ṡ

)
δx0 = 0 .

(20)
From (20) and (15) we have

−EIXIV + kX (x0) δx0

(m0δx0 + ρF )X(x)
=

T̈

T + α0
E Ṫ

−
kA

(
S + h

k Ṡ
)

δx0

(m0δx0 + ρF ) X
(
T + α0

E Ṫ
) . (21)

Adding the formula

kAδx0/ (m0δx0 + ρF ) X

to both sides of (21), we obtain

−EIXIV + k [X (x0)−A] δx0

(m0δx0 + ρF ) X
=

T̈

T + α0
E Ṫ

+
kAδx0

(m0δx0 + ρF ) X

(
1− S + h

k Ṡ

T + α0
E Ṫ

)
. (22)

From (22) and the Lemma we get

−EIXIV + k [X (x0)−A] δx0

(m0δx0 + ρF ) X
=

T̈

T + α0
E Ṫ

+





kA
m0Xα0

T+
α0
E Ṫ−(S+ h

k Ṡ)
T+

α0
E Ṫ

, for x = x0 ,

0 , for x 6= x0 .
(23)

By (10), the right side of (23) depends only on the vari-
able t, and its left side is identical with the left side
of (13). Hence, we get

−EIXIV + k [X (x0)−A] δx0

(m0δx0 + ρF ) X
= −ω2, (24)

T̈

T + α0
E Ṫ

= −ω2, x 6= x0 , (25)

T̈ +
α0

E
ω2Ṫ + ω2T = 0 for x 6= x0 , (26)

T̈

T + α0
E Ṫ

+ k
ω2

0

ω2
0 − ω2

T + α0
E Ṫ −

(
S + h

k Ṡ
)

T + α0
E Ṫ

= −ω2,

x = x0 , (27)

T̈ +
[
ω2 +

kω2
0

m0 (ω2
0 − ω2)

] (
T +

α0

E
Ṫ

)

− kω2
0

m0 (ω2
0 − ω2)

(
S +

h

k
Ṡ

)
= 0 for x = x0 . (28)

Inserting (8) to the second equation of (1), after execut-
ing simple transformations we obtain

S̈ + 2αṠ + ω2
0S

2dṪ + ω2
0T

=
X (x0)

A
for x = x0 , 2α =

h

m
.

(29)
By (10) and (29) it can be shown that

S̈ + 2αṠ + ω2
0S

2dṪ + ω2
0T

=
ω2

0 − ω2

ω2
0

(30)

or

S̈ + 2αṠ + ω2
0S −

(
1− ω2

ω2
0

) (
2dṪ + ω2

0T
)

= 0 ,

x = x0 . (31)

Equation (24) is identical with (13) and Eqs. (28) and
(30) are identical with the set (17), which means that
the theorem has been proved.
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Conclusions from the theorem: If, in (17), we assume
that:

1. α0 = 0, h = 0, we obtain (12);

2. α0
E = h

k , we obtain (14).

3. On the other hand, if, in (20) we assume that
α0 = 0, h = 0, k = 0, we obtain

EIXIV T + (m0δx0 + ρF )X − h1X (x0) δx0 = 0 .

Hence, from (13) and the Lemma it follows that:

− EIXIV

(m0δx0 + ρF )X
=

T̈

T
+

h1δx0

(m0δx0 + ρF )X

=
T̈

T
+

{
h1
m0

Ṫ
T , for x = x0 ,

0 , for x 6= x0 ,

}
= −ω2.

The latest equation is equivalent

XIV − λ4X =
m0

EI
ω2δx0 ,

T̈ +
h1

m0
Ṫ + ω2T = 0 for x = x0 ,

T̈ + ω2T = 0 for x 6= x0 .

4. Similarly as in (3), if, in (20) we assume that α0 = 0,
and h + h1 = 0, we obtain

EIXIV T + (m0δx0 + ρF )XT̈ + kX (x0)Tδx0

− kA

(
S +

h

k
Ṡ

)
δx0 = 0 .

Thus, from (10) and the Lemma, we have

−EIXIV + kX (x0) δx0

(m0δx0 + ρF ) X

=
T̈

T
−





1
T

k
m0

ω2
0

ω2
0−ω2

(
S + h

k Ṡ
)

for x = x0 .

0 for x 6= x0 ,





= −ω2.

And then

XIV − λ4X =
1

EI

(
m0ω

2 − k
)
X (x0) δx0 ,

T̈ + ω2T = 0 for x 6= x0 ,

T̈ + ω2T − k

m0

ω2
0

ω2
0 − ω2

(
S +

h

k
Ṡ

)
= 0 for x = x0 .

The latest equation should be coupled with the second
equation of (17).

3. Model of the solution of the problem
(1), (2), (3)

3.1. Designing of the equation for the problem’s own
values (9), (10), (11)

The general solution (1) assumes the form
X(x) = P cosλx + Q sin λx + R cosh λx + S sinhλx

+
1

2λ3

(
k

ω2
0 − ω2

+ m0

)
ω2

EI
X (x0)

[
sinhλ (x− x0)

− sin λ (x− x0)
]
H (x− x0) (32)

and its second derivative
Ẍ(x) = λ2P cosλx + Q sinλx + R cosh λx + S sinhλx

+
1

2λ3

(
k

ω2
0 − ω2

+ m0

)
ω2

EI
X (x0)

[
sinhλ (x− x0)

− sin λ (x− x0)
]
H (x− x0) . (33)

From (32), (33) and (11) as well as from the values of
the function X(x) (additional condition) in x0 we obtain
the system of equations

A(λ)V = 0 , (34)
where V T = [Q,S,X(x0)], P = R = 0, ω2 = EIλ4

ρF , A(λ) =


sin λl sinh λl J [sinh λ(l − x0)− sin λ(l − x0)]
−λ2 sin λl λ2 sinh λl J [sinh λ(l − x0) + sin λ(l − x0)]
sin λx0 sinhλx0 −1


,

J = 1
2λ3

(
k

ω2
0−ω2 + m0

)
ω2

EI . The system (34) has a non-
-zero solution if

detA(λ) = 0 . (35)
Zero points of (35) are the characteristic values of the
problem (9), (10), (11). These values constitute an
infinite sequence of positive elements [2]

{λn} . (36)
The form of matrix A(λ) shows that ω0 6= ω.

3.2. The condition of orthogonality

The condition of orthogonality of the function space
composed from the solutions of the equation

XIV
n − λ4

nXn =
(

k

ω2
0 − ω2

+ m0

)
ω2

n

EI
Xb (x0) δx0 (37)

and the boundary conditions
Xn(0) = Xn(l) = 0 , XII

n (0) = XII
n (l) = 0 . (38)

The forms of (37) and (38) are obtained from (9), (11)
and (36).

The condition of orthogonality of the solutions of (37)
and (38) assumes the form

∫ l

0

XiXj dx

+
EI

ρF

[
k(ρF )2ω2

0

(m0ρF − EIλ4
i )

(
m0ρF − EIλ4

j

) + m0

]

= 0 for i 6= j ,
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∫ l

0

X2
n dx +

EI

ρF

[
k(ρF )2ω2

0

(m0ρF − EIλ4
n)2

+ m0

]

= χnn > 0 , (39)
obtained in a standard way.

The solution of the problem (1), (2), (3) is a series [4]

U (x, t) =
∞∑

n=1

Xn(x)Kn(t) , (40)

y(t) =
∞∑

n=1

AnKn(t) , (41)

for the cases of (3) and (4), while for (6)

U (x, t) =
∞∑

n=1

Xn(x)Ln(t) for x 6= x0 , (42)

U (x0, t) =
∞∑

n=1

Xn (x0)Mn(t) for x = x0 , (43)

y(t) =
∞∑

n=1

AnNn(t) , (44)

while functions Kn(t) in (40) and (41) are solutions
of (12) (case (3)) or (14) (case (4)) respectively, com-
pleted with the right sides obtained from f1(x, t) or
f2(x, t) issuing from the distributed in a series Xn(x)
as the space base.

In (42), (43) and (44) the computations are analogical
to those for (40) and (41).

4. Conclusion

The obtained results may be used in the construction
of damping systems, controlling systems and those min-
imizing the vibrations transferred from the base to the
object.

Final conclusions:

1. The hitherto prevailing view regarding the separa-
tion of variables in the linear discrete-continuous
systems has been proved wrong. It was not as-
sumed that the specific problems of those systems
are identical for all parameters of the structure,
that is, the parameters determining elasticity and
internal damping.

2. The way of separation of variables presented in the
work indicates that the method can be applied for
more complex systems.

3. The local structure of the beam in the surroundings
of the point of application of the force depends in a
significant way on the parameters of the structure
of the system.

4. The presented computational model is the basis for
very interesting special cases.
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