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Two-dimensional, circular plate was taken under consideration to design a band-gap structure. The analytical
model was built using the Bessel functions and at the end the numerical examples were presented using MatLab
and Ansys software. Results show that it is possible to create a band-gap structure, however further verification
analysis must be made to improve given solution.
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1. Introduction

The propagation and reduction of waves in mechanical
systems is a classical problem in structural dynamics [1].
When high performance is needed, active methods of con-
trol can be used [2, 3]. However such methods are often
complicated and expensive. Thus, the common approach
to mitigate sound and vibration is to use passive meth-
ods. One of such technique is based on well-known phys-
ical phenomenon that periodic structures have several
band gaps in the frequency domain, where no wave prop-
agation is possible [4]. These band-gaps can be easily ob-
tained in one-dimensional structures (beams) by adding
masses to such structures [5]. The beam is infinitely long
(authors [5] also examined real finite beam supported at
the ends) and additional elements must have an equal
geometry, weight and distance among them. Figure 1
shows a sample of described structure.

Fig. 1. A finite beam with periodically attached
masses; Lx — distance between each masses (mx).

If such structure is exposed to external force then the
frequency spectrum of the vibration of the structure will
contain band-gaps. Frequency band-gaps in such struc-
ture mainly depend on two factors: value of mass and
distance among them. In other work [7] author devel-
oped analytical solution for vibration of two-dimensional
structure — a circular Mindlin plate with concentric elas-
tic ring supports. At the end some interesting numerical
results were presented.
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The aim of this work is to extend Sorokin and Er-
shova’s work [5] where one-dimensional beam was used
for calculations, to two-dimensional plate. This may give
more opportunity in application because the geometry of
larger structure (two-dimensional) could provide reduc-
tion of the noise on larger area. As opposed to the Xiang
work [7] circular plate is not supported on the rings but
on the border of the plate. Number of two elastic rings
was chosen after Sorokin and Ershova [5] and for the
source force of vibration there was taken a point force
with constant amplitude transversal along circumference
and located in the centre of the plate.

The analytical solution was built and some numerical
results of insertion loss were presented. Finally the finite
element model of described structure was built in order to
determine the eigenfrequencies of the structure. Finally
these frequencies were compared with negative values of
insertion loss.

2. Problem statement

Considering an isotropic thin elastic plate, an example
of which is shown in Fig. 2, some assumptions must be
made:

• geometry of the plate is circular;

• the plate is thin elastic and infinitely long [5];

• two rings compose additional masses, which in-
crease mass of the plate.

If the plate has finite length then at the end of the
plate there would be a dissipation of energy at the fixing
point. Infinitely long plate avoids this problem [5]. Cir-
cular shape provides symmetry and gives results at every
point of designed structure in radial (r) and circumferen-
tial (ϕ) coordinates. Rings are symmetrical along both
axes. They have the same material properties but differ-
ent geometry and mass. These assumptions simplify the
calculations.
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Fig. 2. Circular plate with two rings attached in cylin-
drical coordinate system (r, ϕ, z); r1, r2 — radius of the
first and second ring, respectively, R — radius of the
plate, h — thickness of the plate, F — external point
force.

In order to solve this problem mathematically, the
plate model has been divided into three parts: inner —
bounded by the first ring, middle — bounded by the first
and the second ring and outer — bounded by the second
ring and ended in infinitive. For the numerical calcula-
tions the radius of the outer part, R, needs to have fixed
length.

3. Approximate analytical solution
3.1. Model

Plate model has been located in polar coordinate sys-
tem r, ϕ in the median plane and the centre of the plate
intersects the median plane as the origin. The deflection
of the plate w is small with respect to its thickness h,
which is small with respect to the radius of the plate R.

First, free oscillations of the plate were taken under
consideration. The boundary conditions for this state-
ment is that for r = R dynamic deflection of the plate
W = 0 and the slope ∂W/∂r = 0. The differential equa-
tion of deflection of the plate has the following form [8]:

D∇2∇2W + kW + γh
∂2W

∂t2
− I2

∂2

∂t2
(∇2W

)
= 0 , (1)

where I2 = γh/12 is the rotatory inertia, D — flexural
rigidity, k — stiffness, and γ is the density. When free
vibration is assumed, the deflection is periodic and can
be expressed as

W (r, ϕ, t) = w (r, ϕ) cos ωt , (2)

where w — angular frequency of the oscillations. Substi-
tuting Eq. (2) into Eq. (1) becomes

D∇2∇2w + kw − γhω2w + I2ω
2∇2w = 0 . (3)

In further calculations a simplified version of Eq. (3) was
taken under considerations, which has the form [6]

(∇4 − λ4
)
w = 0 , (4)

where

λ4 =
γhω2 − k

D
. (5)

Next considerations were made after passing from vari-
able r to the dimensionless quantity ξ = λr (called re-
duced distance).

The general solution of Eq. (4) is

w (ξ, ϕ) =
∞∑

n=0

[
AnJn(ξ) + BnYn(ξ) + CnIn(ξ)

+DnKn(ξ)
]
cosnϕ +

∞∑
n=1

[
A∗nJn(ξ) + B∗

nYn(ξ)

+C∗nIn(ξ) + D∗
nKn(ξ)

]
sin nϕ, (6)

where Jn, Yn, In and Kn are the cyllindrical Bessel func-
tions. The coefficients An, Bn, Cn and Dn, which deter-
mine the mode shapes, are solved using boundary condi-
tions.

According to Fig. 2 and the distribution of the plate
into inner, middle and outer part, three equations of the
deflection must be solved, one for each part, respectively.
Denoting the deflection of these parts with win, wm and
wout and assuming the n-th term for this case to be 0
then for the middle part of the plate Eq. (6) becomes

wm(ξ) = C1J0(ξ) + C2Y0(ξ) + C3I0(ξ) + C4K0(ξ) (7)
and the outer part

wout(ξ) = C5H
(1)
0 (ξ) + C6K0(ξ) , (8)

where Hν(z) — the Bessel cyllindrical function. For the
inner part more calculations must be made. The general
solution for this part will have the following form:

win(ξ) = w0(ξ) + wF(ξ) , (9)
where wF and w0 are the deflection of the plate with and
without the concentrated load at the centre, respectively.

If the plate is solid and there is no point force at the
centre of the plate, then the deflection at ξ = 0 should be
finite. The expansion of the functions Y0(ξ) and K0(ξ)
imply that these functions are infinite as ξ→ 0. However,
this fact does not imply that C3 = 0 and C4 = 0. In
the vicinity of the point ξ = 0, these functions can be
represented in the following form [9]:

Y0(ξ) =
2
π

(
1− ξ2

4

)
ln ξ +

2γ

π
+ . . . , (10)

K0(ξ) = −
(

1 +
ξ2

4

)
ln ξ − γ + . . . (11)

The omitted terms and their derivatives which appear in
the result of the fulfilled differentiation tend to zero as
ξ→ 0. Hence, after omitting these terms, the results of
the calculation will not be changed.

Setting C4 = 2C3/π the sum of the second and the
fourth terms in Eq. (7) will have the form

wF(ξ) = C3

[
Y0(ξ) +

2
π

K0(ξ)
]

. (12)
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In order to find the transversal force along a circumfer-
ence of a small radius ξ, calculation of the sum of the
transversal force along this circumference and passing it
to the limit as ξ→ 0 must be made. The conditions of
the equilibrium of this part of the plate which is bounded
by the circumference of the radius ξ/λ, imply that this
limit is equal to the concentrated load F (Fig. 2), acting
on the plate, taken with the opposite sign. Thus, in or-
der to determine the constant, expression (12) must be
introduced into the following equation:

lim
ξ→0

[
−Dλ3 d

dξ

(
d2w

dξ2
+

1
ξ

dw

dξ

)]
2
π

ξ

λ
= −F , (13)

where F — external force. In this calculation the follow-
ing relations will be used [9]:

d2Y 0(ξ)
dξ2

+
1
ξ

dY0(ξ)
dξ

= −Y0(ξ) , (14)

d2K0(ξ)
dξ2

+
1
ξ

dK0(ξ)
dξ

= K0(ξ) . (15)

After introducing the expression (12) into Eq. (13) and
using Eqs. (14) and (15) it will have the form

lim
ξ→0

[
−DC3λ

2

(
−Y ′

0(ξ) +
2
π

K ′
0(ξ)

)
2πξ

]
= −F . (16)

Using the expressions (10) and (11), after differenti-
ating and passing to the limit, for the determination
of C3 it results in the relation −8DC3λ

2 = F , hence
C3 = −F/(8Dλ2). Thus, Eq. (12) can be written in the
following form:

wF(ξ) = − F

8Dλ2 [Y0(ξ) + 2K0(ξ)/π]
. (17)

If there is no point force at the centre the terms involving
Yn and Kn in the solution (6) must be discarded in order
to avoid infinitive values at the origin, r = 0.

Hence it becomes

w0(ξ) = AnJ0(ξ) + CnI0(ξ) . (18)

Introducing Eqs. (17) and (18) into Eq. (9) and rewriting
the coefficients An . . . Cn the equations for the inner
part win, middle part wm and the outer part wout of the
plate have the following form:

win(ξ) = C1J0(ξ) + C2I0(ξ)

− F

8Dλ2
[
Y0(ξ) + 2

π K0(ξ)
] , (19)

wm(ξ) = C3J0(ξ) + C4Y0(ξ) + C5I0(ξ) + C6K0(ξ) ,

(20)

wout(ξ) = C7H
(1)
0 (ξ) + C8K0(ξ) . (21)

Equations (19), (20) and (21) contain coeffi-
cients C1, C2, . . . , C8 which will be solved using
boundary conditions.

3.2. Boundary conditions

From the description of the model it is clear that the
deflection and the slope of the inner and middle part of
the plate must be the same and equal to deflection and
slope of the first ring, respectively. The similar solution
is found for the middle and outer plate and the second
ring. Their deflections and slopes must remain equal.

Denoting the deflection of the rings by wr1 and wr2,
and the slopes of the rings by dwr1/dξ and dwr2/dξ re-
spectively, the boundary conditions will have the form for
ξ = r1 (r1 — radius of the 1st ring):

win(ξ) = wm(ξ) = wr1(ξ) , (22a)

d
ξ
wm(ξ) =

d
dξ

w(ξ) =
d
dξ

wr1(ξ) ; (22b)

for ξ = r2 (r2 — radius of the 2nd ring):

wm(ξ) = wout(ξ) = wr2(ξ) , (22c)

d
ξ
wm(ξ) =

d
dξ

wout(ξ) =
d
dξ

wr2(ξ) . (22d)

The deflections wr1, wr2 and the slopes dwr1/dξ,
dwr2/dξ will be solved using equations of equilibrium
of the forces and moments (Fig. 3), taking cross-section
of symmetrical plate as a beam.

Fig. 3. Forces and moments in analyzed model.

Equations of equilibrium of the forces and moments
(Fig. 3):

∆F1 = Fin + Fm , (23)

∆F2 = Fm + Fout , (24)

∆M1 = Min −Mm , (25)

∆M2 = Mm −Mout . (26)

Expressing Eq. (23) with deflection of the ring yields

Fin + Fm = wr1m1ω
2 − wr1k1 = wr1

(
mr1ω

2 − k1

)
,

hence
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wr1 =
Fin + Fm

mr1ω2 − k1
, (27)

where mr1 and k1 are the mass and rigidity of the first
ring, respectively. Similarly Eq. (24) becomes

Fm + Fout = wr2

(
mr2ω

2 − k2

)
,

hence

wr2 =
Fm + Fout

mr2ω2 − k2
, (28)

where mr2 and k2 are the mass and rigidity of the second
ring respectively.

Due to inertial forces in the rings under external load,
Eqs. (25) and (26) have the form [10]:

Min −Mm = Ip1ω
2 d

dξ
wr1 − k1T

d
dξ

wr1 +
EI1

r2
1

dwr1

dξ

=
d
dξ

wr1

(
Ip1ω

2 − k1T +
EI1

r2
1

)
,

hence
d
dξ

wr1 =
Min −Mm

Ip1ω2 − k1T + EI1
r2
1

, (29)

Mm −Mout =
d
dξ

wr2

(
Ip2ω

2 − k2T +
EI2

r2
2

)
,

hence
d
dξ

wr2 =
Mm −Mout

Ip2ω2 − k2T + EI2
r2
2

. (30)

E — Young’s modulus, I — second area moment of in-
teria, Ip — second moment of interia, kT — torsional
stiffness.

Equations of symmetrical bending force and moments
of the plate have the following form [11]:

Fn = −D

(
d3wn

dr3
+

1
r

d2wn

dr2
− 1

r2

dwn

dr

)
, (31)

Mn = −D

(
d2wn

dr2
+

ν

r

dwn

dr

)
, (32)

where wn is the deflection in the n-th part of the plate
and ν — the Poisson ratio. Substituting Eq. (31) in
expressions (27) and (28) with appropriate deflection wn

and Eq. (32) in expressions (29) and (30) yields to define
deflections (wr1, wr2) and slopes (dwr1/dξ, dwr2/dξ) of
the rings.

Above calculations yield to use boundary conditions
to calculate unknown parameters C1, C2, . . . , C8. Having
these parameters the deflection for each part of the plate
can be obtained.

In order to find out how the rings affect frequency band
an insertion loss (IL) described by Eq. (33) was used
to calculate the difference between the deflections of the
plate with (win) and without rings (wnr):

IL = 20 log
I[wnr(0)]
I[win(0)]

. (33)

To do so, another equation must be solved. Equation (34)
presents the deflection of the plate without any rings

wnr(ξ) = C9H
(1)
0 + C10K0(ξ) . (34)

Using boundary condition that the slope dw/dr at the
r = 0 must be equal to 0 the unknown parameters C9

and C10 equal

C9 = − F

i4Dλ2(1 + π)
, C10 = i4C1 . (35a,b)

Substituting these parameters to Eq. (34) and canceling
the Bessel functions Y and K (they cancel each other) the
equation for deflection of the plate without rings in the
point where the load is applied has the following form:

wnr(0) = − F

i4Dλ2(1 + π)
. (36)

4. Numerical results

Analytical solution for given problem was calculated
numerically using MatLab software. Each of two plots
present calculated insertion loss for sample values of the
parameters of the rings. The constants here (besides the
material constants which is linear and elastic steel) are
radius of the plate R = 0.5 m, its thickness h = 0.001 m,
external force F = 20 N, mass of the first ring m1 =
1 kg and for the second ring four values of masses m2 =
{0.5, 1, 2, 5} kg. Geometry parameters of the rings (width
equal to height) were automatically calculated from the
moment of inertia for each ring.

Next step was to compare given results with eigenfre-
quencies of the structure.

5. Conclusions

In this work analytical model of two-dimensional, cir-
cular plate was built, described using the Bessel functions
and the numerical examples were presented using Mat-
Lab and Ansys software. From these results the following
conclusions can be made:

Fig. 4. Insertion loss for r1 = 0.2 m and r2 = 0.4 m.

• there are significant differences in insertion loss
between plate with and without additional rings
(masses) when coaxial force is applied (Figs. 4, 5);



976 D. Iwański, J. Wiciak

Fig. 5. Insertion loss for r1 = 0.1 m and r2 = 0.3 m.

• as expected there are frequency ranges where the
band-gap is present, however there are frequencies
for which amplification can be observed. This cor-
responds to eigenfrequencies of additional masses
and their harmonics, solved using finite element
model (Tables I, II);

• there are significant changes between the values of
insertion loss for different masses used as second
ring. The higher value of mass of second ring in the
smaller insertion loss is observed and the frequency
range is lower.

TABLE I
Eigenfrequencies calculated using Ansys
and MatLab software for given rings pa-
rameters: m1 = 1 kg, m2 = 0.5 kg,
r1 = 0.2 m, r2 = 0.4 m.

Mode Frequency [Hz]
Ansys MatLab

35 308 313
56 507 507
70 646 652
96 916 912
149 1412 1437
168 1683 1683

TABLE II

Eigenfrequencies calculated using Ansys
and MatLab software for given rings pa-
rameters: m1 = 1 kg, m2 = 1 kg, r1 =
0.1 m, r2 = 0.3 m.

Mode Frequency [Hz]
Ansys MatLab

18 197 196
33 314 304
64 631 620
86 855 869
105 1099 1104
146 1622 1634

Numerical examples present only a brief view of cal-
culations of investigated model. A further work must be
done in order to improve numerical analysis.
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