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The paper concerns an active vibration protection (p-reduction) of the structure via piezoelectric transducers;
p-reduction corresponds to an active vibration reduction (a-reduction). The quantity and effectiveness of the
(a- or p-) reduction, among other parameters, depend on the piezoelectric transducers distribution on the
structure. The best results are obtained bonding piezoelectric transducers to the structure in the sub-domains
with the largest curvatures; it is so-called quasi-optimal distribution of the piezoelectric transducers. Up to
now, the quasi-optimal distribution was determined based on heuristic reasons only. The aim of the paper is
to confirm quasi-optimal distribution in analytical way. The beam clamped at one end, vibrating with first
three modes separately, is chosen as the research object. It is assumed that the piezoelectric transducers are
exactly the same. Demanding the vibration amplitude to be equal to zero (i.e. p-reduction condition), the general
formula for interacting forces piezoelectric transducers-beam is derived. Next, such an appropriate distribution
of piezoelectric transducers is searched analytically, that the minimal forces are achieved; it leads to the best
reduction effectiveness. It turned out that the analytical method pointed out quasi-optimal distribution of the
piezoelectric transducers. The validation of theoretical considerations is confirmed numerically.

PACS: 43.40.Tm, 43.40.Vn, 77.65.−j, 46.40.−f, 62.25.Jk

1. Introduction

An active vibration reduction of the structure (a-
-reduction) vibrating with low frequencies is generally
known [1, 2]. The active vibration protection (p-
-reduction) is the particular case of a-reduction [3]. The
reduction (a- or p-) is realized with piezoelectric ele-
ments, actuators (PZTs).

The quantity of the reduction depends on many fac-
tors. The first of them makes up the PZTs’ geometric-
-technical features [4–8]. The second essential factor is
appropriate PZTs distribution on the structure [9–11]. It
has an influence on different parameters of the structure
or on the radiated acoustic field [12, 13].

Now, a question arises about an optimal distribution
of PZTs. In the recent year, a great number of papers
has been published on this subject. It is obvious that
there are a lot of optimization techniques; an excellent
survey is given in [14] and references given therein. Two
main approaches are distinguished there. The former is
the coupling of the optimization of actuators/sensors lo-
cations and control parameters. As the criterion for the
optimization, the following criterions are taken into ac-
count:
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• the quadratic cost function of the measure error
and the control energy,

• the maximization of dissipation energy during the
control,

• the spatial H2 norm of the closed-loop transfer ma-
trix from the disturbance to the distributed con-
trolled output,

• the simultaneous simple H∞ controller,

As can be seen, the optimization criterions are depen-
dent on the choice of controllers. Therefore, the optimal
locations obtained using one controller may not be a suit-
able choice for another one. So at the latter approach,
the optimal locations are obtained independently of the
controller definition. In this case, the following criterions
are used:

• the maximization controllability/observability cri-
terion using the Gramian matrices,

• the modal controllability index based on singular
value analysis of the control vector,

• the maximization of the control forces transmitted
by the actuators to the structure,

• using the H2 norm.

(936)
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But in the mentioned references, the PZTs distribution
was not provided explicitly, to confirm maximum effec-
tiveness of the vibration reduction. This problem was
solved [3, 15–17]. It was proved there that the most ef-
fective PZTs distribution is on the structure sub-domains
with the largest curvatures; such distribution is called
quasi-optimal one (QO). In the quoted papers, the QO-
-distribution is deduced based on the heuristic reasons.

The aim of this paper is the theoretical derivation of
such PZTs distribution, to provide the maximum effec-
tiveness of the p-reduction of the beam separately modes.

The beam clamped at first end and free second one
is chosen as the research object. It is assumed that the
beam is excited with evenly spread and harmonic force.
The force acts with first three natural frequencies sepa-
rately. The internal damping coefficient of the material
is introduced.

It is assumed that all PZTs are identical from the ge-
ometrical and technical aspect. As a result, the PZTs
interact with the beam with the same forces. The forces
values depend on the number and the distribution of
PZTs on the beam. To determine them, the following
algorithm is used. First, applying the p-reduction condi-
tion, the formula on the forces (amplitude, strictly speak-
ing) is derived; the necessary condition of the p-reduction
is the vibration amplitude to be equal to zero. Next, es-
tablishing the number of PZTs (not by coincidence) and
considering the different distribution of the PZTs, the
minimal values of forces are searched theoretically. This
means that the minimum energy is added to the system
and consequently, the maximum effectiveness of the p-
-reduction is assured. An effectiveness measure of the
reduction is an effectiveness coefficient; it is defined in
[3, 15, 16].

To the authors’ knowledge recently, the theoretical de-
scription of the PZTs distribution on even simple struc-
ture like the beam, have not been considered. The valid-
ity of theoretical considerations is confirmed numerically.
It turned out that the PZTs distribution theoretically
found in the paper is identical to that one found on the
heuristic way.

2. Forced vibration of the beam with damping

Let the beam be clamped at one side, Fig. 1; geomet-
rical data of the beam: ` — length, S = ah — surface of
the rectangular cross-section, a — width, h — thickness.
Moreover, qE = qE(x, t) — excited force. The beam vi-
bration equation is given by [18] p. 172, [19] p. 104, [5]
p. 27, [20] p. 238,

EJ
[
D4

xu + µD4
x (Dtu)

]
+ SD2

t u = −qE , (1)
where u = u(x, t) — beam deflection at the point x
and the moment t, E — Young’s modulus, J — sur-
face moment of inertia of the beam cross-section, ρ —
mass density, µ — internal damping factor, D4

x(. . .) =
∂4(. . .)/∂x4, Dt(. . .) = ∂(. . .)/∂t.

The boundary conditions are described by the follow-
ing equations:

Fig. 1. The geometry of the problem.

u(x = 0, t) = 0 , Dxu(x = 0, t) = 0 , (2)

D2
xu(x = `, t) = 0 , D3

xu(x = `, t) = 0 . (3)
Besides, initial conditions are assumed to be equal to
zero. The solution of the formulated problem is forced
harmonic vibrations with damping. Let be the lateral
load force

qE(x, t) = qE(x) exp (iωf t) , (4)
where i = (−1)1/2, ωf — frequency.

Applying eigenfunction expansion method, the solu-
tion of Eq. (1) is assumed as

u(x, t) = X(x) exp (iωf t) . (5)
After some calculation, the solution of the above problem
is

X(x) = Xf (x) =
∑

ν

CνXν(x) =
∑

ν

Xf ;ν(x) ,

ν = 1, 2, . . . , n , (6)
where Cν — any constants, Xf (x) — forced vibrations,
Xν(x) — ν-modes (eigenfunctions),

Xν(x) = c(λν`) [sinh(λνx)− sin(λνx)]

− s(λν`) [cosh(λνx)− cos(λνx)] , (7)

c(λν`) = cos(λν`) + cosh(λν`) , (8)

s(λν`) = sin(λν`) + sinh(λν`) , (9)
{λν} — set of eigenvalues: {λν`} = {1.8751, 4.6941,
. . . , (2ν − 1)π/2}.

The constants Cν are expressed by

Cν =
1

(1 + iµωf )ω2
ν − ω2

f

Dν =
1
α2

ν

Dν

=
1

ρS

1
α2

ν

1
β2

ν

Iν;E = C∗νIν;E , (10)

C∗ν =
1

ρS

1
α2

ν

1
β2

ν

, Iν;E = −
∫ `

0

qEXν(x)dx ,

ω2
ν =

EJ

ρS
λ4

ν , β2
ν =

∫ `

0

X2
ν (x)dx . (11)

Thus, the problem of the beam vibration with damping,
excited with the force qE(x, t) is solved. The first three
modes, Eq. (7), are depicted in Fig. 2.

Henceforth, the spread load force with constant ampli-
tude qE is considered, i.e.

qE(x) = qE = const. (12)
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Fig. 2. Eigenfunctions (modes): 1 — X1, 2 — X2,
3 — X3.

3. Beam vibration reduction by PZT

As it is already known [1, 2], the PZTs-beams interact
with moments of the couples of forces, Fig. 3a. Since the
beam vibration equation is the forces equation, then to
consider the action of PZTs on the beam, two moments
are replaced with two couples of forces, Fig. 3b. Next, the
separate forces are taken into account in Eq. (1). Hence,
the total load is the sum of the load force expressed by
Eq. (12) and the forces interacting between PZTs and the
beam, and it is given by

f(x) = −qE +
[
fPδ(xP − lP)− 2fPδ(xP)

+ fPδ(xP + lP)
]
. (13)

An expression in the bracket is the sum of interacting
forces PZTs-beam, δ(.) — the Dirac function.

Fig. 3. An idea of interaction of the PZT-beam: (a)
moments, (b) couples of forces.

The integral Iν , Eq. (11), for f(x) given by Eq. (13),
takes the form

Iν = −
∫ `

0

f(x)Xν(x)dx = −qE

∫ `

0

Xν(x)dx

+ fP

∫ `

0

(
δ(xP − lP)− 2δ(xP) + δ(xP + lP)

)

× Xν(x)dx = −qE

∫ `

0

Xν(x)dx + fP

[
Xν(xP − lP)

− 2Xν(xP) + Xν(xP + lP)
]
. (14)

The expression in square bracket constitutes the second-
-order central finite difference. Since the distance be-

tween nodes lP is constant, then the difference can be
transformed into

1
l2P

[
Xν(xP − lP)− 2Xν(xP) + Xν(xP + lP)

]

= D2
xXν(xP) = κν(xP) , (15)

where κν(xP) is the curvature of the mode Xν(x) at the
point x = xP [3, 15, 16].

Generally
κν(x) = ±D2

xXν(x) . (16)
Substituting Eq. (15) into Eq. (14), one obtains

Iν = −qE

∫ `

0

Xν(x)dx + fPl2Pκν(xP) = Iν;E + Iν;P .

(17)
For several PZTs, instead of Eq. (17), is

Iν = Iν;E + f1`
2
1κν(x1) + f2`

2
2κν(x2) + . . .

= Iν;E +
∑

P

fP`2Pκν(xP) = Iν;E + Iν;Σ ,

P = 1, 2, . . . , nP , (18)
where nP — number of PZTs, {xP} — set of the points
where PZTs are bonded; both nP and {xP} should be
determined; it is the aim of the paper.

Substituting Eq. (10) into Eq. (6) via Eq. (17), the re-
duction vibration is obtained

Xf (x) =
∑

ν

C∗νIνXν(x) =
∑

ν

C∗ν (Iν;E + Iν;Σ )Xν(x)

=
∑

ν

Af ;νXν(x) . (19)

Together with the vibration reduction amplitude Af ;ν ,
the curvature is subjected to reduction and instead
of Eq. (16) is

κf (x) = ±D2
xXf (x) =

∑
ν

κf ;ν(x)

= ±
∑

ν

C∗ν (Iν; e + Iν;Σ )κν(x) = ±
∑

ν

Af ;νκν(x) .

(20)
The reduction of the Af ;ν leads to the reduction of
the shear force Q(x) and bending moment M(x) [3, 18]
p. 172, [13],

Qf (x) = ±EJDxκf (x) = ±EJ
∑

ν

Dxκf ;ν(x)

= ±EJ
∑

ν

Af ;νDxκν(x) , (21)

Mf (x) = ∓EJκf (x) = ±EJ
∑

ν

κf ;ν(x)

= ±EJ
∑

ν

Af ;νκν(x) . (22)

From the last equations it appears that the active vi-
bration reduction undergoes on the following amplitudes:
beam vibration Xf (x) — Eq. (19), shear force Qf (x) —
Eq. (21) and bending moment Mf (x) — Eq. (22). This
is the same amplitude Af ;ν , so it may be named as the
reduction amplitude. Hereafter, the notion “shear force



Analytical Determination of the PZTs Distribution . . . 939

reduction” is used instead of “the reduction of the ampli-
tude of the shear force”, and so on.

Equations (19), (21) and (22) may be written com-
monly

Ψf (x) =
∑

ν

Ψf ;ν(x) = C
∑

ν

Af ;νΦν(x) , (23)

where (argument x is omitted)
Ψf = {Xf , Qf ,Mf} , Φν = {Xν , Dxκν , κν} ,

C = {1,±EJ,±EJ} . (24)
Let us note that the amplitude Af ;ν is the direct quantity
which is liable to the reduction, in explicit form is

Af ;ν = C∗ν (Iν;E + Iν;Σ )

= C∗ν

[
Iν;E +

∑

P

fP`2Pκν(xP)

]
. (25)

4. p-reduction problem, solution
with heuristic method

As can be seen from Eq. (23), the reduction of Af ;ν

brings about the reduction of Ψf (x). The general classi-
fication of the reduction is as follows [16]:

• a-reduction; [a]ctive,

• p-reduction; [p]rotection.

a-reduction of Ψf (x) means decreasing of the quan-
tity Ψf (x). Hence, it is demand to fulfill the following
condition: Ψf = Ψf ;min. So, it leads to the condition:
Af ;ν = Af ;ν;min.

p-reduction is a special case of the a-reduction and it
means the protection of Ψf (x). Therefore it leads to the
condition Ψf = 0 or

Af ;ν = 0 . (26)
The amplitude Af ;ν comprises the factor C∗ν 6= 0 and it is
constant. In practice, instead of the condition (26), the
following condition of the p-reduction must be fulfilled:

Iν;E + Iν;Σ = Iν;E +
∑

P

fP`2Pκν(xP) = 0 . (27)

The sign of Iν;E is negative, see Eq. (17). To fulfill the
condition (27), the sign of Iν;Σ must be positive. The
signs of the curvature κν(xP) and the forces fP decide
on the sign Iν;Σ . From the technical and reduction ef-
fectiveness points of view, the condition (27) should be
fulfilled as little as possible number nP (number of PZTs).
It is possible if the signs of κν(xP) and fP are the same,
namely positive or negative. An idea of description of the
signs of κν(xP) and fP arise from the physical interpreta-
tion of the active vibration reduction; it is so-called the
signs convention and is described in detail in [3, 15, 16].

Assume that all PZTs are exactly the same, hence
{fP} = {f0} and {`P} = {`0}. So, instead of Eq. (27)
one has

Iν;E + Iν;Σ = Iν;E + f0`
2
0Kν = 0 , (28)

where

Kν =
∑

P

κν(xP) = κν(x1) + κν(x2) + . . .

+κν(xP) + . . . + κν(xnP) . (29)
Kν means the sum of curvatures of the modes Xν(x)
at the points in which the PZTs are bonded (at the xP

points). From Eq. (29) it is derived

f0 = − Iν;E

`20Kν
. (30)

In Eq. (30), the {f0} is only the amplitude of {fP}. The
direction of f0 depends on xP and it is determined with
the signs conventions.

The problem is to determine the number of PZTs and
such their distribution in order to the value of f0 should
attain its minimum. It leads to the maximum effective-
ness of the reduction. Because of the value Iν;E 6= 0 and
it is constant, only Kν has the influence on the effec-
tiveness of the p-reduction. Under circumstances given
above, it comes up to the determination of nP and xP.

The problem was solved in [3] based on the heuristic
reasons. The PZTs are bonded on the beam sub-regions
in which the curvatures take their maximum and the
highest and lowest values. This is so-called QO distribu-
tion of the PZTs and it is described with xQ ≡ xP points
and the nQ ≡ nP number of the PZT. It is proved in [3]
that QO-distribution of the PZTs provides the maximum
effectiveness of the p-reduction.

5. Analytical method of the PZTs distribution

The aim of the current section is to work out of the
analytical method, which will describe such distribution
of the PZTs in order to assure the maximum of the
p-reduction effectiveness of the separate beam modes.
It is expected that the analytical method will confirm
the QO-distribution which has been found with heuristic
method [3]. Therefore the assumptions are the same like
in heuristic method, i.e. nQ number of PZTs is assumed.

Let the distribution of PZTs be marked with the set of
coordinates {x′P} for the moment; these are exactly these
coordinates which are looked for. The starting equation
is Eq. (30) via (29) one. Hence instead of Eq. (29) is

K ′
ν =

∑

P

κν(x′P) = κν(x′1) + κν(x′2) + . . .

+κν(x′P) + . . . + κν(x′nP
) . (31)

Now, the value of f0 is calculated from the formula, cf.
Eq. (30),

f0 = − Iv;E

`20K
′
ν

= − Iv;E

`20
∑

P κν(x′P)
. (32)

The signs of κν(x′P) at separate points x′P, have an influ-
ence on the sign of f0; see signs convention in [3]. If the
denominator in Eq. (32) has a maximum value, the f0

takes a minimum one. Note, that κν(x) is the function
which changes the sign. So it is appropriate to search the
points x′P which assure the extreme of the denominate,
not maximum only. The function κν(x) can have the ex-
tremum only at points x′P, at which Dxκν(x′P) is equal
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to zero or Dxκν(x′P) does not exist ([21] Vol. 1, p. 241).
Hence, a necessary condition for an extremum value is

Dxκν = 0 . (33)
From the condition (33), a set of stationary points {x′P}
is obtained. For separate value ν, ν = 1, 2, 3, the points
{x′P} are depicted in Figs. 4b–6b (briefly — parts b) and
they are marked with “ ”. The values of {x′P} are placed
in Table.

TABLE
Analytical results.

ν P {x′P} {xQ} κν(xQ) f0

1 1 0 371.7 0.2583
2 ` 0

s2
1 0 2.468× 104 0.0144
2 0.1429 0.1429 −2.336× 104 0.0144
3 ` 0

3

1 0 1.329× 106 0.0022
2 0.0831 0.0831 −1439× 106 0.0022
3 0.1914 0.1914 1.655× 106 0.0022
4 ` 0

Fig. 4. (a) κ1(x), (b) Dxκ1(x), (c) D2
xκ1(x).

The sufficient condition of existing extremum demands
in order the function was determined on either side of the
point x′P ([21] Vol. 1, p. 241) and Dxκν(x) must change
sign at this point (turning point); condition formulated
in the first form is sufficient. This condition is expressed
in the other form

D2
xκν

∣∣
x′P
6= 0 . (34)

The point x′P = ` in parts b does not fulfill the above
condition. This is because the function κν(x) is not de-
termined on either side of the point x′P = `. So then
this point should be omitted in future considerations.
Since then it is easy to use the sufficient condition in
the form (34). For this purpose the function D2

xκν(x)

Fig. 5. (a) κ2(x), (b) Dxκ2(x), (c) D2
xκ2(x).

Fig. 6. (a) κ3(x), (b) Dxκ3(x), (c) D2
xκ3(x).

is presented in Figs. 4c–6c (parts c). On these figures
one can point out the points {x′P}, at which the function
κν(x) has extremum and moreover, to decipher the sign
of D2

xκν(x). But not only the points {x′P} play a ma-
jor part here. Because of the form of Eq. (32), one still
needs to consider the biggest and the lowest values of
κν(x); they are in hypothetical points {xmax, xmin} ([21]
Vol. 1, pp. 149÷252). In order to find them, the values
of κν(x) at the stationary points {x′P} are calculated and
they are compared to the values calculated at the end
points of the interval x ∈ [0, `]; the results are tabulated
in Table. As can be note, for all ν = 1, 2, 3, the curvature
κν(x) has the biggest value at the point x = 0 = xmax.
However, there is no the lowest value of κν(x) at the
point x = `. Hence, the point x = 0 should be taken into
consideration, but the point x = ` ought to pass over
for some reasons: 1 — the necessary condition of the ex-
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tremum is not fulfilled, 2 — at this point and apart from
κν(`) = 0 the function κν(x) does not taken its lowest
value .

After considerations given above, the PZTs distribut-
ing points can be selected. The point x′P = ` out of the
stationary points should be rejected, whereas the point
x = 0 = xmax should be connected. The selected points
are described with {xP} and they are marked by “•”. in
Figs. 4a–6a (parts a). Having to the disposal the values
of {xP}, firstly, one can calculate the curvatures signs
of κν(xP). Next, based on Eq. (32), one can calculate
the value and determine the sign of f0.

6. Numerical calculations
The aim of the numerical tests is to confirm quan-

titatively the validation of the worked out analytical
method. In numerical calculations the following data are
assumed [3]: ` = 0.27 m, a = 0.025 m, h = 0.001 m,
J = (ah3)/12 m4, E = 2.05×1011 Pa, µ = 1.94×10−4 s,
ρb = 7.8 × 103 kg/m3, fE = 0.02 N/m. The size of
all PZTs is the same, i.e. `1 = `2 = `3 = 0.05`. Further-
more, all PZTs are excited by the same signal; it concerns
the second and the third mode. The first PZTs has to
be moved away from clamped side within necessary dis-
tance `0. The quality results are depicted in Figs. 4–6,
but the quantitative ones are collected in Table.

7. Conclusions
Based on the theoretical and numerical considerations,

the following conclusions enumerated below may be for-
mulated:

1. The PZTs distribution problem, assuring maximum
of effectiveness of the p-reduction of the separate
modes of the beam vibration, may be found ana-
lytically.

2. Analyzing the values of the points {xP} it turns out
that they are QO-point {xQ} obtained earlier with
heuristic method. So, the heuristic and analytical
methods give the same results.

3. The algorithm of the analytical method can be for-
mulated as follows

• to find the stationary points {x′P} of the cur-
vature κν(x),

• to select the points {x′P}, at which the ex-
tremum of the curvature κν(x) exists,

• to find the points {xmax, xmin}, at which the
curvature κν(x) has the highest and the lowest
values,

• to select the {xP}-points of the PZTs distri-
bution,

• to determine signs and to calculate the values
both curvature κν(x) and the force f0 at the
points {xP}. Such f0 assures the maximum
effectiveness of the p-reduction.

In the paper the analytical method of the PZTs distri-
bution in vibration p-reduction problem was worked out
for separate modes only. The similar research for gen-
eral beam vibration and also for different, in geometric-
-technical regards, PZTs, may be more useful. The re-
search on these problems is carried on.
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