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The problem of estimation of the environmental noise hazard indicators and their uncertainty is presented in

the hereby paper. The main attention is focused on the estimation process of the long-term noise indicators and
their type A standard uncertainty defined by the standard deviation of the mean of the measurement results. The
rules given in the ISO/IEC Guide 98 are used in the calculations. It is usually determined by means of the classic
variance estimators, at the assumption of the normality of measurements results. However, such assumption in
relation to the acoustic measurements is rather questionable. This is the reason that the authors indicated the
necessity of implementation of non-classic statistic solutions. There was formulated the estimation idea of seeking
density function of long-term noise indicators distribution by the Bayesian inference, which does not generate
limitations for form and properties of analyzed statistics. There was presented theoretical basis of the proposed
method, and the example of calculation process which make possible determining searched estimators of expected
value and variance of long-term noise indicators LDEN and LN. The illustration for indicated solutions and useful-
ness analysis was constant monitoring results of traffic noise recorded on one of the main arteries of Kraków, Poland.

PACS: 43.50.Rq, 43.50.Yw

1. Introduction

Directive 2002/49/EC of the European Parliament [1]
requires carrying out a long-term policy of the environ-
ment protection against noise in the European Union
countries. Its realisation is based on the estimation of
long-term noise indicators LDEN and LN in sites being
under the protection.

The average A-weighted long-term sound levels LDEN

and LN in dB are determined on the basis of noise an-
noyance indicators LDEN,i for i = 1, 2, . . . , M (where
M = 365 or M = 366 for the leap year) of all days in the
calendar year at the day–evening–night periods [2]:

LDEN,i = 10 log
(

1
24

(
12× 100.1LD,i

+ 4× 100.1(LE,i+5) + 8× 100.1(LN,i+10)
))

, (1)

where LD,i — A-weighted sound level, determined from
the day-time noise exposure i.e. from 6:00 a.m. to 6:00
p.m., dB, LE,i — A-weighted sound level, determined
from the noise exposures from 6:00 p.m. to 10:00 p.m.,
dB, LN,i — A-weighted sound level, determined for the
night periods i.e. from 10:00 p.m. to 6:00 a.m., dB, and
night periods LN,i for i = 1, 2, . . . , M determined by
relation [2]:

LN,i = 10 log

(
1
K

K∑

i=1

100.1(LAeq,T)i

)
, (2)
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where K — sample size, (LAeq,T)i — equivalent sound
level for the i-th sample, dB.

Estimation of the long-term indicators of the acoustic
hazard for the environment LDEN and LN being the av-
erage value calculated from all calendar days

LDEN = 10 log

(
1
M

M∑

i=1

100.1LDEN,i

)
, (3)

LN = 10 log

(
1
M

M∑

i=1

100.1LN,i

)
, (4)

forming a set of two indicators LAeq,LT = {LDEN, LN},
requires an access to the results of the whole year sound
level monitoring.

The necessity of validation of the obtained results,
which requires the analysis of uncertainty budget of esti-
mation, is connected with the process of calculating the
average long-term noise indicators determined by values
of LDEN and LN.

An essential component of such budget is the standard
type A uncertainty defined as the standard deviation of
the mean from the inspections results. The rules given
in the ISO/IEC Guide 98 [3] are used in the calculations.
They are based on the classic variance estimators and
on the condition of assigning the normal distribution to
random results of the sampling inspections.

However, the application of its recommendations in re-
spect of the estimation of the type A standard uncer-
tainty of noise hazard indices in environment is rather
dubious. As it results from [4–7], the assumption of a
normal distribution of measurement results is difficult to
be accepted. This is confirmed by the analysis of the mea-
surement results of traffic noise, which in significant ma-

(916)



Application of the Bayesian Inference for Estimation . . . 917

jority required the rejection of the hypothesis concerning
the possibility of using the normal distribution for the de-
scription. Extra-statistical information in relation to the
occurrence of certain noise expositions in environment,
especially in night hours (more than one maximum) also
discredit this assumption.

However, in practice, there is a necessity of estimating
the average long-term noise indicators LAeq,LT on the ba-
sis of environment sampling inspections. It generates the
need of estimation of the expected value and variances
of the controlled noise hazard indicators from the highly
limited random sample, which does not undergo the nor-
mal distribution. Therefore searching for non-standard
procedures of the estimation of the average long-term
noise indicators LDEN and LN and their variances, seems
to be necessary.

The authors proposed the Bayesian inference for solv-
ing these problems. Inference about θ parameter is made
on the basis of the conditional distribution of this pa-
rameter for the fixed observation x, often called the pos-
terior distribution from the Bayes formula. An applica-
tion of this idea, based on the Bayesian inference, consti-
tutes a premise for increasing the estimation accuracy of
the expected value and variances of the long-term noise
indicators LAeq,LT on the bases of the results obtained
by sampling inspections. Discussion of the method, to-
gether with the example illustrating its functioning, will
be contained in the present paper. The reference base
constitutes the results of the constant noise monitoring
recorded in one of the main arteries of Kraków, Poland.

2. Bayesian inference

2.1. Bayes’ theorem

Bayesian methods are currently regarded as non-
-classical statistical methods. Their difference compared
to classical methods is the result of the adoption of other
interpretations of probability. In the classical approach it
is interpreted as an idealization of frequency, while in the
Bayesian approach the probability is a measure of the re-
searcher’s degree of belief about the veracity of the event
occurring. In consequence the model classical parameters
are recognised as random variables.

Suppose we are trying to estimate a random parameter
θ from data x. Then the associated conditional density
p(θ|x) is called the posterior density because the esti-
mate is conditioned “after the measurements” have been
acquired. Estimators based on this a posteriori density
are usually called Bayesian because they are constructed
from Bayes’ theorem, since p(θ|x) is difficult to be ob-
tained directly. That is, Bayes’ rule is defined [8–10]:

p (θ|x) =
f(x)
p(x)

=
p(x|θ)p(θ)∫

Ω
p(x|θ)p(θ)dθ

, (5)

where p(θ) is called the prior density (before measure-
ment), p(x|θ) is called the sampling density or likelihood
(more likely to be true), p(x) is called the marginal data
density or evidence (normalizes the posterior to assure its

integration to unity), Ω is called the parameters space.
Bayesian methods view the sought after parameter as
random possessing a “known” a priori density. As mea-
surements are made, the prior is converted to the poste-
rior density function adjusting the parameter estimates.
Thus, the result of increasing the number of measure-
ments is to improve the a posteriori density resulting in
a sharper peak closer to the true parameter. The at-
tractiveness of the Bayesian approach is also associated
with the fact that the posterior density reflects informa-
tion about unknown parameters in a purely probabilistic
method and asymptotic approximation-free, which would
entail the total inference for small samples [11, 12].

In this paper to generate samples from posterior den-
sity here was applied the random walk Metropolis–
Hastings sampling method, discussed below.

2.2. Random walk Metropolis–Hastings sampling

The Markov chain simulation is essentially a general
technique based on generating samples from the proposal
distributions and then correcting (acceptance or rejec-
tion) those samples to approximate a target posterior
distribution. Here we must know both the target p(θ|x),
and the proposal pE(ξ) distributions. The samples are
sequentially generated forming the Markov chain. Typi-
cally, in the Markov chain simulation, samples are gener-
ated from the transition kernel or distribution. The key,
however, is not really the chain itself, but the fact that
the approximate distribution improves sequentially as it
converges to the target posterior.

In this subsection we discuss the random walk
Metropolis–Hastings sampling method (random walk
M–H). The fundamental idea is similar to the rejec-
tion method [10]. The random walk Metropolis–Hastings
technique defines the Markov chain indexed by consecu-
tive integers i = 1, . . . , S, S+1, . . . , S+N , where first S
samples are treated as the cycles burned and discarded.
The idea is to perturb the current sample xi with an ad-
dition of random error, that is [10]:

xi+1 = xi + ξi , (6)

where ξi is a random error from the proposal distribu-
tion pE(ξ). A reasonable choice for this distribution is a
symmetric Gaussian, that is pE(ξ) ∼ N(0, σ2

ξ ).
In the first step, drawing a random error ξi from the

proposal distribution pE(ξ), next generate “candidate”
sample x̂i from (6) and drawing random sample ui from
the uniform distribution U(0, 1). Now calculate the ac-
ceptance probability [10, 12]:

ρ (xi, x̂i) = min
{

f (x̂i)
f (xi)

, 1
}

(7)

and then making a decision on the base [10, 12]:

xi+1 =

{
x̂i if ui < ρ (xi, x̂i) ,

xi otherwise
(8)

whether this candidate should be accepted and retained
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or rejected and discarded using the previous sample as
the new. If accepted, x̂i replaces xi+1 otherwise the old
sample xi is saved. This is the core of the random walk
M–H approach in its simplest form.

With this algorithm, we must use both the (known)
proposal and target distributions to calculate the accep-
tance probability (7) and then generate samples (random
walk) from the proposal. It is important to realize that a
“good” proposal distribution can assure generating sam-
ples from the desired target distribution, although the
samples must still be generated to “cover” its range. This
method does not require knowledge of the marginal data
density p(x) from Eq. (5) [12].

2.3. Bayesian estimation

The random walk M–H method is able to generate cor-
related sample X from a continuous posterior distribu-
tion.

In the Bayesian inference the form of parameter θ de-
pends not only on the prior and posterior distributions,
but also on the loss function L. If the loss function is a
quadratic function of form [13]:

L(θ, d) = C(d− θ)2, C > 0, (9)

where d — decision. The Bayesian estimate of θ parame-
ter is expected value of posterior distribution, which was
determined as the mean from the Markov chain after re-
moved cycles burned [8, 10]:

θ̂
BAY

= Ê [p(θ|x)] =
1

N − S

N∑

i=S+1

θBAY
i , (10)

where θBAY
i — elements of random sample X from pos-

terior distribution.
Because of that we received correlated sample X as

result of sampling. The autocorrelation function should
be designated and there should be selected the elements
that are not correlated. We obtain a simple random sam-
ple Y of size k on the base of which we can calculate the
standard deviation θ parameter as follows [8, 10]:

ŝBAY =

√
Ê

{
[p(θ|x)]2

}
−

{
Ê [p(θ|x)]

}2

=

√√√√1
k

k∑

i=1

(
θBAY∗

i − θ̂
BAY

)2

, (11)

where θBAY∗
i — elements of simple random sample Y .

3. Estimation of parameters of the long-term
noise indicators

Point estimation of parameters of the long-term noise
indicators LAeq,LT (an expected value and type A stan-
dard uncertainty) was performed on the bases of sam-
pling inspections — when utilising the classical and the
Bayesian inference.

The values determined from the data base of the re-
sults recorded in the year 2004 and 2005 by the constant

monitoring system operating in one of the main arter-
ies in Kraków were assumed as the measured value of
LAeq,LT . This enabled the possibility of assessing the er-
ror of estimation of the expected values of the long-term
noise indicators generated by solution proposed.

Type A uncertainty and expected value of the long-
-term noise hazard indicators was also determined with
the application of two types estimators:

• classical, which assumes the normality of results of
the long-term noise indicators,

• Bayesian, which does not generate limitations re-
garding forms and properties of the investigated
statistics.

The investigated populations constituted the results of
the 24 h average day A-weighted sound level and the 24 h
average night A-weighted sound level determined on the
basis of the constant monitoring. Out of those popula-
tions simple samples of sizes: n = 5, 9, 12, 15, simulating
the number inspection days, were sampling. Those sam-
ples were the assessment basis for LDEN and LN. Util-
ising the application developed in the Matlab software
packet the expected values as well as the type A uncer-
tainty of the long-term noise indicators were assessed.

The expected values of indicators — in the classical
approach — were determined by the equation

L̄Aeq,LT = 10 log

(
1
n

n∑

i=1

100.1LAeq,LT,i

)
, (12)

where n — sample size, LAeq,LT,i — index level for the
i-th sample, dB.

The type A uncertainty of the long-term noise hazard
indicators were determined by equation [3]:

s
(
L̄Aeq,LT

)
=

√∑n
i=1

(
LAeq,LT,i − L̄Aeq,LT

)2

n(n− 1)
. (13)

In this experiment posterior distributions of the long-
-term noise indicators are designated on the basis Eq. (5).
Prior and sampling density determined make use of ker-
nel density estimation presented in [14–17]. The samples
of sizes: n = 5, 9, 12, 15, were the assessment basis to de-
termined sampling density in the Bayesian inference. For
sampling density from year 2004, prior density was de-
termined on the basis results from year 2005 whereas, for
sampling density from year 2005, prior density was deter-
mined on the basis results from year 2004. For the pur-
poses of this simulation experiment N = 70, 000 samples
from posterior distribution were generated, while the first
S = 20, 000 were treated as burned. To generate sam-
ples from posterior distribution used the random walk
M–H, discussed in Sect. 2.2. After considering the com-
ments made in Sect. 2.3 the Bayesian estimate of long-
-term noise indicators were defined as
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L̄BAY
Aeq,LT =

1
N − S

N∑

i=S+1

LBAY
Aeq,LT,i, (14)

where LBAY
Aeq,LT,i — index level for the i-th sample from X,

dB, N — total number of samples, S — number of sam-
ples burned, however the Bayesian estimates type A stan-
dard uncertainty were calculated

sBAY

(
L̄BAY

Aeq,LT

)
=

√√√√1
k

k∑

i=1

(
LBAY∗

Aeq,LT,i − L̄BAY
Aeq,LT

)2

,

(15)
where LBAY∗

Aeq,LT,i — index level for the i-th sample from Y ,
dB, k — sample size of Y .

4. Experimental results

The long-term environmental noise hazard indicators
i.e. the day–evening–night level LDEN and the night level
LN were determined on the basis of the results recorded
in the year 2004 and 2005 by the constant acoustic mon-
itoring station installed at one of the main arteries in
Kraków.

The estimated results of the long-term environment
noise hazards LAeq,LT = {LDEN, LN} as well as the type
A uncertainty — describing them — obtained by appli-
cation of the mentioned above methods are presented in
Table I and Table II.

There are certain discrepancies between the known val-
ues of LDEN and LN, and the estimated values (classical
and Bayesian), eight Bayesian estimate had a significant
error (marked bold in Table I). On the basis of this ex-
periment, it is difficult to say unequivocally which of the
presented methods provided results with smaller error
(the difference between the measured value and the es-
timated). The solution of this problem requires further
research.

The estimation results of the standard type A uncer-
tainty of the long-term environment noise hazard indica-
tors determined for the same random samples (as the ex-
pected values shown in Table I) are presented in Table II.

It can be noticed that the type A uncertainties es-
timated by the Bayesian method are higher than the
ones estimated by the classic method (marked bold in
Table II). They have been estimated on the basis of dis-
tributions, not just random samples. This can indicate a
more accurate estimation of the long-term noise indica-
tors carried out by means of the Bayesian method.

5. Conclusions

The results described in the paper, concerning the ap-
plication of the Bayesian estimation for the assessment
of the mean of the long-term noise indicators and their
uncertainties, indicate that they can constitute the new
and promising calculation tool. They enrich the existing
calculating algorithms. It should be mentioned that as-
sumptions related to their application are free from lim-
itations corresponding to the classic estimation analysis.

TABLE I
Estimates of the expected values of long-term noise
indicators.

Indicator
Measured
value
[dB]

Sample
size
n

Classic
estimate
[dB]

Bayesian
estimate
[dB]

year 2004

LDEN 77.1821

5 77.0095 76.6370
9 77.2291 77.1242
12 77.3112 77.2514
15 77.2424 77.2096

LN 69.4956

5 68.9590 69.0768
9 69.4655 69.3502
12 69.4687 69.3287
15 69.2699 69.2170

year 2005

LDEN 76.5461

5 75.6662 76.9996
9 77.2036 77.3000
12 76.1675 77.0731
15 76.3431 77.0216

LN 68.9467

5 69.7324 69.5002
9 67.7056 69.2195
12 68.1616 69.1306
15 68.6730 69.1887

TABLE II
Estimates of the type A uncertainty of long-term
noise indicators.

Indicator
Sample
size
n

Classic
estimate
[dB]

Bayesian
estimate
[dB]

year 2004

LDEN

5 0.7708 1.0979
9 0.1702 0.5242
12 0.1578 0.5345
15 0.2551 0.7320

LN

5 0.4073 0.9347
9 0.1883 0.5229
12 0.1914 0.6144
15 0.2391 0.6858

year 2005

LDEN

5 1.1331 0.8873
9 0.6212 0.5352
12 0.7246 0.8546
15 0.4051 0.6213

LN

5 0.3062 0.6230
9 0.7563 1.0009
12 0.5494 0.7688
15 0.5968 0.8459
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They neither require knowing the size and character of
the statistics nor the access to large bases of samples,
which makes them more likely in an application.

The simulation experiment of the determination of the
expected value and the type A uncertainty was carried
out by means of two methods: classical and Bayesian,
and its results presented. The results that were obtained
allow to state that:

• it is difficult to say unequivocally which of the pre-
sented methods obtained results with smaller error
(the difference between the measured value and the
estimated); the solution of this requires further re-
search,

• the type A uncertainty determined by the Bayesian
method is of a higher value, because they have been
estimated on the basis of distributions, which indi-
cates that the estimation of the expected value of
the long-term noise indicators is more accurate.

Due to the limited base of simulation experiments, the
selection of the estimation method of the long-term noise
indicators can be conditioned by the adopted criterion of
the error of estimation of these indicators. The decision-
-making process can be conditioned by the estimation ac-
curacy of the analysed noise indicators, or by the required
uncertainty interval related to this process. However, set-
tlement of this problem requires broader investigations.
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