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Gain Spectrum for the In4Se3 Crystal with a Non-Standard
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Based upon the ab initio band structure calculations results and the density of states function of the
orthorhombic In4Se3 crystal as well as the experimental data concerning its radiative recombination, it was shown
that the Bernard–Durafour condition is fulfilled for this crystal. The absorption coefficient α that exhibits a
negative value in the given energy range and for the given concentrations of non-equilibrium charge carriers, was
calculated.
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1. Crystalline structure and energy spectrum
of the In4Se3 crystal

Recently, a growing interest to some layered indium se-
lenides [1–3] has occurred due to their non-standard dis-
persion laws for charge carriers and the possibility to cre-
ate InSe–In4Se3 heterostructures [4]. The layered In4Se3

semiconductor belongs to the orthorhombic system and
its symmetry is described by the D12

2h (Pnnm) space
group. It is a direct-band-gap material with the small-
est energy gap in the Γ point of the Brillouin zone (BZ).
The dispersion laws for electrons and holes exhibit a low-
-energy non-parabolicity due to the presence of the four-
-power terms of the wave vector k. A consequence of this
fact is a peak-like density of states function [5]. These
peculiarities were observed for the first time in calcula-
tions of the band structure of In4Se3 crystal by the semi-
empirical pseudopotential method [6], confirmed both by
the ab initio band structure calculations [1] in the frame-
work of density functional theory (DFT), and experimen-
tally [2, 3]. Such a placement of the band extrema fa-
vors the radiative recombination of charge carriers, which
is the subject of theoretical investigation of this paper.
The experimental investigation on the radiative recom-
bination of In4Se3 were reported in [7]. In this case,
a generation of charge carriers took place by means of the
electron beam of the density j ∈ (0.2–5.0) A/cm2, with
the energy of a single electron W ∈ (65–70) × 103 eV at
T = 90 K, in the spontaneous and stimulated regimes.
These experimental investigations were performed before
the band structure of In4Se3 has been investigated.

2. Generation and recombination of charge
carriers in the In4Se3 crystal

The theory of emission and absorption of a two-level
system can be applied to a semiconductor [8], when

assumed that the number of transitions per time unit
from the ground state 1, being a chosen energy level
in the valence band, to an excited state 2 in the con-
duction band, can be given as: νabs

12 = B12f1(1 −
f2)g1(E1)g2(E2)Z(E12), where B12 is the Einstein coeffi-
cient [9] describing a transition probability, f1, f2 are the
Fermi–Dirac distribution functions, g1, g2 are the density
of states functions for the considered levels in the va-
lence and conduction bands, Z(E12) is the density of pho-
tons. The number of transitions per time unit connected
with a stimulated and spontaneous radiation can be de-
scribed as: νstim

21 = B21f2(1 − f1)g1(E1)g2(E2)Z(E12),
νspon
2,1 = A21f2(1 − f1)g1(E1)g2(E2), respectively. In the
thermodynamic equilibrium: νabs

12 = νstim
21 + νspon

21 and
the following relation between the density of photons
and the Einstein coefficients results from this relation:
Z(E12) = A21/[B12 exp((E2 − E1)/kBT ) − B21]. The
density of photons Z(E12) = Z(E21) = Z(E) can be ob-
tained independently of the Planck theory [8]:

Z(E) =
8πn3E2

12

(
1 + E21

n
dn
dE

)

c3h3[exp(E21/kBT )− 1]
, (1)

where n is a refraction coefficient.
The following relation between the Einstein coeffi-

cients A21, B12, B21 is obtained from the last two equa-
tions: A21 = 8πn3E2

21B21/c3h3, B12 = B21. A condition
necessary for the stimulated emission process to occur
in the considered system is obtained by assuming that
νstim
21 > νabs

12 , which implies the Bernard–Durafour con-
dition: E2 − E1 < Ef2 − Ef1 [10], where Ef2 and Ef1

are the quasi-Fermi levels of the non-equilibrium carri-
ers present in the conduction and valence bands, respec-
tively. When the absorption processes (transitions 1–2)
prevail over the emission ones (transitions 2–1), then the
absorption coefficient α is positive, else it is negative
and is connected with the population inversion, for which
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α(E21) = B12(f1 − f2)n/c [8]. The Einstein coefficient
B12 can be obtained by applying the time-dependent per-
turbation theory to describe an interaction between elec-
trons in the solid state with the electromagnetic radia-
tion.

Let ψ1(r, t), ψ2(r, t) be the wave functions describing
the initial and final stationary state, and the perturba-
tion operator Ĥ(int) = −e/mA · p̂, where A is a vector
potential of the electromagnetic field. Taking into ac-
count that E = −∂A/∂t, where E is the strength of the
electromagnetic field, one obtains E = E0 exp(i(ωt −
k · r)) + E∗

0 exp(− i(ωt − k · r)) = 2E0n cos(ωt − k · r),
and hence A = −2(2~/ε0n

2ω)
1
2 n sin(ωt − k · r), since

E2
0 = 2~ω/ε0n

2 [8]. Then

B12 =
1
t

∣∣∣∣
1
i~

∫ t

0

〈ψ1|Ĥ(int)(t′)|ψ2〉e iω12t′ dt′
∣∣∣∣
2

=
2π

~
2e2~2

m2ε0n2~ω
|〈ψ1|p̂|ψ2〉|2 δ(E2 − E1 − ~ω) (2)

=
A

~ω
|M12|2δ(E2 − E1 − ~ω) , (3)

where A is a constant. Unlike in the case of a two-level
system, for a semiconductor, there exists continuum of
states in the valence and conduction band that are de-
scribed by the density of states functions gv(Ev − E1)
and gc(E2 −Ec). Therefore, the absorption coefficient α
with energy ~ω should be equal to the sum of absorption
coefficients ~ω of photons for all pairs of levels placed on
this energetic distance. This sum can be written as the
integral

α(~ω) ∼ 1
~ω

∫ +∞

−∞
|M12|2n/c[(fv(E1)− fc(E2))]

× gv(Ev − E1)gc(E2 − Ec)δ(E2 − E1 − ~ω)dE1 .

(4)
Here obviously E2 − E1 = ~ω. An analytic form of the
density of states function g(E) for the In4Se3 crystal is
known neither for the conduction band bottom, nor for
the top of the valence band. Therefore, to calculate the

coefficient α for In4Se3 from Eq. (4) we switch to the
variables kx, ky, kz of the wave vector

α(~ω) =
A

~ω

∫

BZ

|M12|2n/c{fv[Ev(k)]− fc[Ec(k)]}

× δ(Ec(k)− Ev(k)− ~ω)d3k . (5)

As can be seen from (5), to calculate α, one should find
a value of the matrix element M for all those k-points
which describe the top of the valence and the bottom of
the conduction bands, and for which the energetic dis-
tance corresponds to the photon energy ~ω. To calculate
the matrix element M we used the wave functions in the
form of a combination of the plane waves, following from
the ab initio band structure calculations of the In4Se3

crystal [1].

3. Results and discussion

The quasi-Fermi levels Efv(k) and Efc(k) depend on
the concentration of the non-equilibrium charge carri-
ers. Therefore, we calculated dependence of these lev-
els on concentration, that is presented in Fig. 1. We
estimated the non-equilibrium concentration of electrons
and holes in In4Se3 based upon experimental data [7], by
calculating firstly the energy E0, necessary to create one
electron–hole pair: E0 ≈ 3Eg [11] for the average value
of the experimental band gap Eg = 0.7 eV, known from
the kinetic investigations [12], and next, the multiplicity
coefficient νe = W/E0 = 3.4×104 electron–hole pairs (for
W = 68× 103 eV). Finally, the concentration of the non-
-equilibrium electrons ∆n = jτνe/ed belongs to the range
1019–1020 cm−3 (for j = 5.0 A/cm2). We assumed in cal-
culations that the radiative lifetime τ of an electron–hole
pair is in the range 10−6–10−7 s, that is characteristic for
typical semiconductors [13], and the penetration depth
of electrons from the beam d ≈ 10−6 cm, that corre-
spond to the energy W ≈ 104–105 eV [14]. The obtained
value ∆n = ∆p allows to estimate the energetic posi-
tions of the quasi-Fermi levels for electrons and holes.
The calculated energy distance Efc−Efv = 0.94 eV (for
n ∼ ∆n = 1019 cm−3) which ensures that the Bernard–
Durafour criterion is fulfilled.

Fig. 1. Dependence of the quasi-Fermi levels of non-equilibrium electrons (a) and holes (b) vs. their concentration in
In4Se3.
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Fig. 2. (a) Absorption coefficient vs. photon energy, (b) dependence of the absorption coefficient on the non-equilibrium
concentration of carriers for In4Se3.

Figure 2a shows results of numerical calculations of the
α coefficient vs. ~ω at 90 K for which the stimulated ra-
diation measurements were done for In4Se3. As can be
seen, α < 0 in the range (0.75, 1.10) eV which ensures
a possibility of the stimulated radiation. Figure 2b dis-
plays a dependence of the absorption coefficient on the
non-equilibrium concentration of charge carriers at the
energy corresponding to the peak of the stimulated ra-
diation. The obtained energy values corresponding to
α < 0 are in agreement with the experimental data for
the In4Se3 crystal, which indicates that the chosen values
of the penetration depth d = 10−6 cm and the lifetime
τ ≈ 10−6 s are correct for the In4Se3 crystal. The peak-
-like density of states function near the energy gap in
In4Se3 does not make it difficult to enter the quasi-Fermi
levels into the valence and conduction bands. Therefore,
the Bernard–Durafour criterion can be fulfilled, and in
consequence, the radiative recombination takes place in
this crystal.
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