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Coupled resonators and coupled transmission lines are described with the same coupling curve. A ratio
between resonant frequencies, squared, of coupled resonators and ratio between impedances of coupled transmission
lines reveal the same type of dependence on coupling coefficient. This can be used to select, adjust or create the
models of coupled structures. As an example the new model of coupled transmission lines has been developed. Its
application in LC element directional coupler is presented and discussed.
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1. Introduction

Microwave resonators and microwave transmission
lines can be coupled to create frequency selective struc-
tures used in microwave devices. Main applications of
coupled transmission lines and resonators are filters but
also couplers, transformers and many other devices. In
the past coupled structures were described by circuit
models [1, 2]. Such models were very helpful in design of
microwave circuits and still are used. As an example of
important circuit theory that is still used and even under
continuous development one can consider the multiple
coupled resonator filter design method. In the method
the coupling matrix of the filter is designed based on the
use of ideal inverters approximating couplings between
resonators [3]. Now microwave structures are mostly an-
alyzed and designed in electromagnetic simulators [4–6]
but anyway circuit models can help in speeding up the
analysis.

Microwave filters can be built of different resonators:
cavities, dielectric resonators, planar resonators, comb-
-line and interdigital resonators, LC resonant circuits
etc. Some of the filter structures apply coupled trans-
mission lines serving as coupled resonators e.g. comb-line
and interdigital resonators, parallel-coupled resonators.
This motivated the author to search for similarities and
differences in theory describing coupling effects between
coupled resonators and coupled transmission lines. Ob-
tained results seem to be very interesting because as it
is shown below the unified description of the electromag-
netically coupled structures can be found. Such a uni-
fied description can be used to improve the modelling of
coupled structures and improve the design process of de-
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vices applying coupled resonators and/or coupled trans-
mission lines. It has been found that there is a universal
curve of coupling coefficient applicable to both coupled
resonators and coupled transmission lines. This implies
that the same formulae can be used to describe reso-
nant frequencies of coupled resonators and impedances
of coupled transmission lines. Taking advantage of the
coupled resonators theory new models of coupled trans-
mission lines are introduced and discussed. Their circuit
equivalents are presented and analyzed. As a result novel
structures of LC directional couplers are obtained.

2. Resonant frequencies of coupled resonators

Two coupled resonators or resonant circuits have two
resonant frequencies [7–9]. These resonant frequencies
(called also eigenfrequencies) can be accurately computed
or measured. Let us consider two identical resonators,
which are coupled and isolated from any other structures.
When the coupling is small, the resonant frequencies are
close to the resonant frequency of uncoupled resonators.
When the strength of coupling increases, the difference
between two resonant frequencies of coupled resonators
increases as well. The strength of coupling is described
with the coupling coefficient that can be computed from
the following formula [7–9]:
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where f1 and f2 are resonant frequencies of coupled res-
onators. The resonant frequencies can be precisely found
from electromagnetic simulations. In fact the resonant
frequencies can be computed analyzing a half of the cou-
pled resonator structure with perfect electric or perfect
magnetic wall introduced in the symmetry plane. De-
pending on the type of coupling the eigenfrequency f1
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can be lower or higher than f2. On the base of circuit
models it is assumed that magnetic type of coupling re-
sults in f2 > f1 and that electric type of coupling pro-
duces reversed relation between eigenfrequencies. For the
purpose of this paper let us assume that f2 > f1. Then
the formula (1) can be written without absolute value
sign. The reason for such an assumption is explained in
Sect. 3.

In MIKON 2010 paper [10], three examples of typi-
cal microwave structures: coupled rectangular waveguide
resonators, coupled comb-line resonators and coupled in-
terdigital resonators have been shown. They have been
analyzed by means of QuickWave; a general-purpose elec-
tromagnetic simulator based on FDTD method [11]. Res-
onant frequencies of presented structures and calculated
coupling coefficients exhibiting different behaviour of the
resonant frequencies and different frequency range have
been used to create Fig. 1 where the coupling coeffi-
cient is drawn versus the ratio between resonant frequen-
cies squared. Not surprisingly the characteristic of cou-
pling coefficient is independent of the type of coupled
resonators. After a simple transformation Eq. (1) is as
follows:
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where g means the function, which is the same for any
coupled resonators. Thus one can state that coupling co-
efficient depends on the ratio between resonant frequen-
cies. It seems obvious that for any resonator structure
the coupling coefficient depends on the ratio between res-
onant frequencies squared in the same way as shown in
Fig. 1.

Fig. 1. Coupling coefficient versus ratio between reso-
nant frequencies squared.

From Eq. (2) it is not difficult to find that the ratio be-
tween resonant frequencies squared depends on coupling
coefficient as

f2
1

f2
2

= g−1(k) =
1− k

1 + k
. (3)

3. Impedances of coupled transmission lines

In a case of coupled symmetric transmission lines elec-
tromagnetic coupling produces two modes of propaga-
tion. The modes are named “odd” and “even” [12, 13].
Each mode has its own characteristic impedance denoted
Z0o for odd mode and Z0e for the even mode. When cou-
pling is small the impedances are close to the impedance
of uncoupled lines. When the strength of coupling in-
creases, the difference between impedances becomes big-
ger. The coupling coefficient of coupled transmission
lines can be calculated from their impedances [12]:

k =
Z0e − Z0o

Z0o + Z0o
. (4)

It should be noted that the odd mode impedance Z0o is
always lower than the impedance of the even mode Z0e.
This is the reason for assuming the inequality f2 >
f1 in the previous paragraph. In MIKON paper [10]
examples of the coupled transmission lines have been
presented. In Fig. 2 one more example is shown.

Fig. 2. (a) Coupled slab lines. (b) Corresponding
impedances and coupling coefficient.

Fig. 3. Coupling coefficient versus ratio between
impedances Z0o and Z0e.
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Impedances and coupling coefficients of coupled slab lines
shown structures are presented. The impedances have
been computed obtained from conformal transformation
method [14]. Computed impedances from [10] and Fig. 2
have been used to create a plot shown in Fig. 3 where a
coupling coefficient versus ratio between the impedances
Z0o and Z0e has been drawn. The same curve as in a case
of coupled resonators has been obtained which is not sur-
prising taking into account the similarity of formulae (4)
and (1). Let us transform Eq. (4):

k =
1− Z1

Z2
Z1
Z2

+ 1
= g

(
Z1

Z2

)
, (5)

where g is the same function as in Eq. (2) and the same
one for any coupled transmission lines. Finally it is not
difficult to find that the ratio between impedances de-
pends on coupling coefficient as

Z0o

Z0e
= g−1(k) =

1− k

1 + k
. (6)

Presented coupled transmission lines are typical exam-
ples. All uniform coupled transmission lines revealed the
same behaviour shown in Fig. 3. Thus one can state that
the shape of the curves from Fig. 1 and Fig. 3 is the
universal feature of both resonator and transmission line
coupled structures.

4. Implications

The universal curve describing both coupled resonators
and coupled transmission lines can be used to create
and verify circuit models of coupled structures. The
dependence of the resonant frequencies squared and
impedances on coupling coefficient in any model should
comply with the formula (3) and (6). The universal curve
can be also used to improve the accuracy of computed
resonant frequencies and impedances.

The circuit models of coupled microwave resonators
are well known. Over 10 circuit models can be found in
the literature [7–9, 15]. The eigenfrequency method for
computation of coupling coefficient between microwave
resonators is successfully used in the microwave filter de-
sign methods. The method is based on the circuit models
of coupled resonators. The circuit models can be divided
into simple i.e. using an inverter with only one type of
immitance and combined i.e. using the inverter with two
different immitances [7–9, 15]. As an example let us con-
sider two resonant circuits coupled through inverter with
series capacitance between resonators, as shown in Fig. 4.
The circuit from Fig. 4 has two resonant frequencies

f2
1 = f2

0

1
1 + k

, (7)

f2
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0

1
1− k

, (8)

where coupling coefficient k = Cs/C, resonant frequency
of uncoupled resonators f0 = 1/(2π

√
LC). The ra-

tio between resonant frequencies squared is described

by Eq. (3). Thus the model complies with the univer-
sal coupling curve.

Fig. 4. Parallel resonant circuits coupled through ad-
mittance inverter with capacitances.

Coupled transmission lines are described with the only
one circuit model [12, 13, 16]. In this model introduced
by Oliver [13] the coupling between line of unit induc-
tance L and unit capacitance C is provided through ad-
mittance inverter with series negative capacitance Cs and
impedance inverter with parallel inductance Lp. From
the Oliver model the following impedances of the odd
and even mode can be found [17]:

Z0o = Z

√
1− k

1 + k
, (9)

Z0e = Z

√
1 + k

1− k
, (10)

where coupling coefficient k = Lp/L and k = Cs/C,
impedance Z is the impedance of a single, uncoupled
line Z =

√
L/C. Again, computing the ratio between

modal impedances Eq. (6) is obtained. The model com-
plies with the universal coupling curve. Despite the un-
physical properties of the Oliver model described in [17]
it has one more unpleasant feature i.e. negative series
capacitance that is introduced between lines. It is im-
possible to create a real LC structure due to negative
series capacitance.

5. New model of coupled transmission lines

It would be interesting to create a new model of cou-
pled transmission lines that has proper physical prop-
erties and also can be realized with a lumped element
structure. Let us assume that the formulae (7) and (8)
are used. One can write the impedances of coupled trans-
mission lines as follows:

Z0o =
Z

1− k
, (11)

Z0e =
Z

1 + k
. (12)

The impedance Z0o is the square root of the ratio between
the odd mode inductance and odd mode capacitance. To
comply with Eq. (11) the capacitance and inductance of
the odd mode should be written in a following way:
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C0o = C(1− k) , (13)

L0o =
L

1− k
. (14)

In a similar manner one can write formulae for the even
mode capacitance and inductance

C0e = C(1 + k) , (15)

L0e =
L

1 + k
. (16)

From Eqs. (13)–(16) it is clear that line capacitances are
coupled through admittance inverter with negative series
capacitance, and line inductances are coupled through
admittance inverter with series inductance [15]. Addi-
tionally, the velocities of propagation of the odd and even
mode are the same and equal to the velocity of propa-
gation of the single uncoupled line. The main drawback
of the Oliver model is removed [17]. Now it is possible
to draw the lumped element circuit of the unit section
of coupled transmission lines and check the properties of
the new model.

The model in Fig. 5a has negative capacitance Cs. It
is possible to simulate such a structure but it cannot be
realized in practice. But at the single frequency one can
replace the negative capacitance with positive inductance
as shown in Fig. 5b. The inductances Lc are related to
the negative capacitances Cs at the center frequency of
the coupler. Moreover two inductances in parallel result
in a single one — see Fig. 5c. With such a replacement
one can obtain the lumped element circuit of the coupled
transmission lines with all realizable elements but valid
in a narrow band around the center frequency.

Fig. 5. New lumped element model of the unit section
of coupled transmission lines in a directional coupler
configuration. (b) Transformed structure of the new
lumped element coupler. (c) Final circuit of new lumped
element coupler.

Computed characteristics of the 6 dB new directional
coupler with center frequency of 4.8 GHz are shown in
Fig. 6. Results are even better than initial characteristics

Fig. 6. Frequency characteristics of new lumped ele-
ment 6 dB coupler operating at 4.8 GHz. Coupler ele-
ments: L = 1.45 nH, C = 1.122 pF, Ls = 2.96 nH.

for the model with negative capacitance. In fact these
characteristics are superior over other known lumped el-
ement couplers. The well-known lumped element cou-
pler [18] in which coupling is provided through series ca-
pacitances is much worse taking into account flatness of
s31 and s41 parameters.

6. Conclusions

The universal curve describing coupling structures has
been found. The universal curve describing both coupled
resonators and coupled transmission lines can be used
to create and verify circuit models of coupled structures.
The dependence of the coupling coefficient on the ratio
between resonant frequencies squared or ratio between
modal impedances should comply with the formulae (3)
and (5). Taking the advantage of the existing models of
coupled resonators the new model of coupled transmis-
sion lines has been developed. The new model has been
used to create a new lumped element directional coupler.
The characteristics of the new coupler are better than the
characteristics of the traditional lumped element coupler.
The universal curve can be also used to improve the accu-
racy of computed resonant frequencies and impedances.
The same approach can be applied to unsymmetrical cou-
pled resonators and transmission lines and can be useful
in cross-talk analysis.
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