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The spatiotemporal collapse of the spin-dipole wave pulses of the millimeter wave range is investigated
theoretically. The dispersion and the diffraction coefficients of spin-dipole wave have been calculated, when
the retardation has been taken into account. It is demonstrated that YIG films are suitable for observing
the wave collapse in the millimeter wave range, due to low dissipation and quite high values of dispersion
and diffraction coefficients. In the hexaferrite films, despite the higher values of the dispersion and the
diffraction coefficients, the dissipation prevents the formation of the spatiotemporal collapse. The additional focus-
ing of the pulse can increase the nonlinear pulse compression. The numerical simulations have confirmed this result.
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1. Introduction

The nonlinear wave propagation and the interaction in
the solids are of the great interest during many years.
The big attention has been given to the solitons and the
related phenomena like the self-focusing and the wave
collapse. The variety of the solitons was presented in
the optics [1]. In the microwave and millimeter wave
ranges the nonlinear waves have been investigated in the
semiconductor electron plasmas [2] and in the ferrite films
[3–11]. In the present paper the waves in ferrite films are
considered, because these films are characterized by the
high nonlinearity and the low losses.

Most of the interesting results are devoted to the prop-
agation of the nonlinear waves in the ferrite films along
the bias magnetic field, for example, the backward vol-
ume magnetostatic waves (BVMSW) [4–10], where both
solitons and collapsing nonlinear wave pulses have been
observed [3–5]. The detailed theoretical and experimen-
tal investigations were performed in the centimeter wave
range, at the frequencies f ≈ 3–20 GHz, with YIG films.
It is of the interest to investigate the nonlinear spin-
-dipole wave propagation in the millimeter wave range,
f ≈ 30–60 GHz. At those frequencies, the hexaferrite
films can be suitable, due to the higher magnetization
and the essential magnetic anisotropy field [3]. But the
hexaferrite films possess the strong dissipation compared
with the YIG films. It seems important to consider the
nonlinear wave propagation in the YIG films under the
higher bias magnetic fields H0 ≥ 10 kOe that are accessi-
ble for the experiments, because the dissipation is a lim-
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iting factor for the observing of the solitons and the wave
collapse. In this paper the absolute (Gaussian) units are
used.

The propagation of the linear and the nonlinear spin-
-dipole wave (SDW) in the centimeter wave range is
usually considered in a quasistationary approximation,
where the electromagnetic (EM) retardation is neglected,
so-called the magnetostatic waves. In the millimeter
wave range the applicability of the quasistationary ap-
proximation is doubtful, because the longitudinal wave
number of SDW can be comparable with one of the elec-
tromagnetic wave (ω/c)ε1/2

f ≈ 40 cm−1. For a generation
of the bright temporal solitons and the spatial ones it is
necessary to obtain the certain signs of the dispersion and
the diffraction coefficients, respectively, if the sign of the
nonlinearity coefficient is determined [3–6]. At the lower
values of the wave number the hybridization of SDW with
the EM one takes place. Even a small retardation may
lead to an essential change of the wave dispersion because
of the opposite directions of the group velocities of the
BVMSW and the EM waves.

In the paper the propagation of the moderately non-
linear SDW in the YIG films and in the hexaferrite ones
in the millimeter wave range is analyzed. The propaga-
tion is along the bias magnetic field. The dispersion and
diffraction coefficients and the wave dissipation have been
calculated both for the YIG films and for the hexaferrite
ones. The values of the longitudinal wave numbers are
specified where the propagation of the bright temporal
solitons and the realization of the wave collapse are pos-
sible. The numerical simulations of the nonlinear wave
propagation have been provided. The splitting with re-
spect to the physical factors has been applied. A possi-
bility of the spatial-temporal wave collapse of the SDW
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in the YIG films has been demonstrated. In the hexa-
ferrite films the high dissipation prevents a realization of
the wave collapse. The additional focusing of the SDW
pulse can improve the nonlinear compression of the pulse.

2. Dispersion and diffraction coefficients of the
SDW in the millimeter wave range

The propagation of the exchangeless SDW in the thin
ferrite film along the bias magnetic field is considered.
In the millimeter wave range, it is possible to use either
hexaferrite films of the great magnetic anisotropy or to
apply the high bias magnetic field H0 ≥ 10 kOe in the
case of the YIG films. The geometry of the problem is
given in Fig. 1.

Fig. 1. Geometry of the problem.

The ferrite film (|x| < l) is placed on a nonmagnetic
substrate (x < −l). The air is at x > l. Let us note
that these SDW possess the opposite signs of the phase
and group velocities. The frequency range of the propa-
gation of the backward volume SDW is ωH < ω < ω3 ≡
[ωH(ωH + ωM )]1/2, where ωH = γH0, ωM = 4πγM0; H0

is the bias magnetic field jointly with the anisotropy field,
4πM0 is the saturation magnetization, γ is the gyromag-
netic ratio. Usually the SDW propagation is considered
at the frequencies ω ≈ ω3, and the following condition
for the wave number k is valid: kl ¿ 1.

In the quasistationary approximation, it is possible to
calculate analytically the dispersion coefficients for the
BVMSW [3]. The following expansion of the frequency
ω on the longitudinal kz and transverse ky wave numbers
is used
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Here ∆ω = ω−ω0, ∆kz = kz−kz0, ∆ky = ky; ω0, kz0 are

the central values of the frequency and the wave number
of the SDW packet, ky0 = 0. The parameter δ defines
the dissipation in a ferrite material [10].

The numerically calculated dispersion relations for the
linear SDW, the fundamental mode, are given in Fig. 2
both for the YIG films and the hexaferrite ones. The
retardation has been taken into account in the parts (b),
(c), (e), (f). The parameters for Fig. 2 are as follows:
the thickness of the film is 2l = 10 µm (parts (a),
(b), (d), (e)), the bias magnetic field jointly with the
anisotropy field is H0 = 12 kOe (YIG) and H0 =
10 kOe for the hexaferrite; the saturation magnetization
is 1760 Oe for the YIG and 5000 Oe for the hexaferrite.
The dissipation parameter δ is 2×10−4 for the YIG films
and 10−3 for the hexaferrite ones; the last value is really
even higher. One can see from Fig. 2, parts (c), (f) that
the SDW possess the higher values of the dispersion in
the thicker films, 2l ≥ 8 µm. The dielectric permittivities
of the ferrite and the substrate are εf = 17 and εd = 15,
respectively.

Fig. 2. Dispersion curves k(ω) and dispersion coeffi-
cients for the SDW in the YIG film (a,b,c) and in the
hexaferrite film (d,e,f). In parts (a), (d) the curve 1 is
with retardation, 2 is in quasistationary approximation.
In parts (b), (c), (e), (f) the curve 1 is ∂2ω/∂k2

z , 2 is
∂2ω/∂k2

y, 3 is ∂2ω/∂kz∂ky (cm2/s units).

The values of k(ω) calculated in the quasistationary
approximation do not differ essentially from the exact
ones, see Fig. 2, parts (a), (d). But the influence of
the hybridization of the SDW with the EM waves leads
mainly to the change of the values, especially, the sign,
of the dispersion coefficient ∂yω/∂ky

z .
Such a change of the sign occurs at the relatively

high values of the wave numbers k ≈ 150 cm−1, as
seen in Fig. 2, parts (b), (e). The transverse profiles
of the wave change weakly. Moreover, the retarda-
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tion leads to an appearance of the cross-dispersion term
∂2ω/∂kz∂ky. Also the y-component of the group velocity
occurs: ∂ω/∂ky 6= 0 at ky = 0, but |∂ω/∂ky| ¿ |∂ω/∂kz|.
This occurs due to the asymmetry of the structure in the
vertical direction.

Thus, to obtain the bright temporal soliton propaga-
tion and the realization of the wave collapse, it is nec-
essary to choose the larger values of the wave numbers
k > 100–150 cm−1.

3. Numerical simulations

The propagation of the SDW pulses transversely local-
ized along Y -direction is under investigations. A possi-
bility of the wave collapse of the SDW in the YIG films
and in the hexaferrite ones has been checked by the sim-
ulations of the nonlinear parabolic equation, which cor-
responds to the expansion of ω = ω(kz, ky, |A|2). In an
undimensional form, this equation is
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Usually the transverse component of the group velocity
is small: |v2| ¿ |v1|, whereas the diffraction coefficient
g12 can be comparable with the dispersion one g11 un-
der the small values of the wave number k ≤ 100 cm−1.
Equation (2) has been added by the boundary condition

A(z = 0, y, t) = A0 exp(−((t− t1)/t0)4)

× exp(−((y − y1)/y0)4) . (3)

The numerical solution of (2) has been obtained with
the splitting by the physical factors [12]:
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Here Ap ≡ A(pτ), τ is the temporal step. The sta-
ble 3-layer scheme has been used at the first fractional
step, because of the term with the mixed derivatives
∂2A/∂z∂y.

The results of the simulations are given in Figs. 3–5 and
in Figs. 7–9. The thickness of the film is 2l = 10 µm. The
main obstacle for observing the soliton formation and the
wave collapse is the dissipation of the SDW, which is low
in the YIG films and quite high in the hexaferrite ones.
One can see that for the SDW in the YIG films there

Fig. 3. Dynamics of the nonlinear SDW in the YIG
film; A0 = 0.65. Part (a) is at the time moment t =
10 ns, (b) t = 20 ns, (c) t = 25 ns, (e) t = 27 ns, (f) t =
29 ns. Part (d) is for the focused pulse at t = 25 ns.

Fig. 4. Dynamics of the nonlinear SDW in the YIG
film; A0 = 0.7. Part (a) is at t = 10 ns, (b) t = 15 ns,
(c) t = 20 ns, (d) t = 28 ns, (e) t = 30 ns, (f) t = 32 ns.

exists the value of the input pulse amplitude A0 when the
pulse compression both in Z-direction and in Y -direction
takes place, compare Fig. 3 and Figs. 4, 5. As a result, the
nonlinearity ceases to be moderate, and the wave collapse
occurs, see Fig. 5. In Figs. 3–5, the following values are
used: the carrier frequency is ω0 = 2.24 × 1011 s−1, the
central wave number is k0 = 300 cm−1, the dissipation
of the YIG is δ = 2× 10−4, ωM = 3.1× 1010 s−1, ωH =
2× 1011 s−1; t0 = 5 ns, y0 = 0.075 cm. The value A = 1
corresponds to the ratio (mz−M0)/M0 = −0.025, where
mz is z-component of the magnetization in the presence
of SDW.
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Fig. 5. Dynamics of the nonlinear SDW in the YIG
film; A0 = 0.75. Part (a) is at t = 10 ns, (b) t = 25 ns,
(c) t = 27 ns, (d) t = 29 ns.

Fig. 6. Geometry of the focusing of the SDW. The pa-
rameter R is the radius of antenna, zc is the coordinate
of the focus.

An efficiency of the self-action of the nonlinear pulses
by means of additional focusing the pulses [13] is consid-
ered, too, see Fig. 6. When the exciting antenna for the
SDW is circular it is possible to focus the beam of the
SDW. The simplified approach is applied [13] to analyze
this focusing, which is consistent with Eq. (2). Namely,
the equivalent boundary condition at z = 0 is used. The
propagation difference for the rays at z = 0 is written up
to obtain this condition: ∆(y) ≈ R − (z2

c + y2)1/2. Here
R is the radius of the curvature of the antenna, zc is the
coordinate of the focus. This leads to the following phase
difference: Ψ(y) ≈ −keff∆(y), where keff is the effective
longitudinal wave number that corresponds to the diffrac-
tion coefficient in Eq. (2). Thus, in the simplest model
of the focusing, it is possible to use the additional mul-

Fig. 7. The focusing of the linear pulse in the YIG film.
Part (a) is at t = 10 ns; part (b) is at t = 25 ns, maxi-
mum compression.

Fig. 8. Dynamics of the nonlinear SDW in the hex-
aferrite film; A0 = 1.5. Part (a) is at t = 19.2 ns,
(b) t = 25.6 ns, (c) t = 27.2 ns, (d) t = 28.8 ns.
Parts (e), (f) are for the focused pulse at t = 20.8 ns,
t = 22.4 ns.

Fig. 9. Dynamics of the nonlinear SDW in the hexa-
ferrite film; A0 = 1.5. Higher dissipation. Part (a) is at
t = 22.4 ns, (b) t = 27.2 ns, (c) t = 30.4 ns. Part (d)
is for the focused pulse at t = 28 ns, the maximum
compression.

tiplier in Eq. (3): exp(− ik∆(y)). In the undimensional
form, the expression for keff can be obtained from Eq. (2)
as keff ≈ g22/(2v1). As a result the multiplier takes the
form exp(− ig22/(2v1)∆(y)).

In the case of the YIG films, the focusing leads to the
essential increase of the nonlinear self-compression of the
pulse. In Fig. 3, part (d), the distribution of |A|2 is given
for the time moment t = 25 ns. The radius of the cur-
vature of the input antenna is R = 0.25 cm. One can
see that by means of the initial focusing it is possible
to reach the collapse at the lower values of the ampli-
tude A0, when comparing with the pulse without the
initial phase modulation. In Fig. 7 the maximum com-
pression is demonstrated for the modulated pulse of a
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small amplitude A0 = 0.1. Only the weak increase of
the amplitude of the linear pulse occurs there. This con-
firms the fact that in Fig. 3d namely the nonlinear pulse
compression takes place.

In the hexaferrite films, the dispersion coefficients of
the SDW are higher than for the YIG films. But the wave
dissipation is one order higher, too, see Figs. 8, 9. Fig-
ure 9 corresponds to a more realistic value of the wave dis-
sipation. The transverse compression of the SDW pulse
occurs, i.e. the formation of the spatial solitons, but the
wave collapse does not take place. In Figs. 8, 9 the values
are: ω0 = 2.1× 1011 s−1, k0 = 300 cm−1, the dissipation
in the hexaferrite is δ = 1×10−3 (Fig. 8) and δ = 2×10−3

(Fig. 9), ωM = 8.8 × 1010 s−1, ωH = 1.7 × 1011 s−1;
t0 = 5 ns, y0 = 0.15 cm. The value A = 1 corresponds to
(mz −M0)/M0 = −0.01 there.

The additional focusing can improve the compression
of the nonlinear pulses in the hexaferrite films, see Fig. 8,
parts (e), (f), and Fig. 9, part (d). The curvature radius
of the antenna is R = 0.4 cm there. But the strong
dissipation prevents the forming of the wave collapse even
with the additional focusing. Nevertheless, this focusing
could be useful in the devices based on the nonlinear
pulses of the SDW, like [8].

When the exact wave dispersion was taken into ac-
count, the simulations have confirmed the results ob-
tained within the parabolic approximation. Namely, the
exact linear wave dispersion has been used as given in
Fig. 2, parts (a), (d), instead of the parabolic approx-
imation of Eq. (2). The dispersion of nonlinearity has
been taken into account, too [14]. These simulations
have been confirmed that the wave collapse can occur for
the SDW in the hexaferrite films only at the dissipation
δ ≤ 5× 10−4.

4. Conclusions

The calculations of the dispersion and the diffraction
coefficients of the SDW in the ferrite films have demon-
strated that the bright soliton propagation and the wave
collapse of the SDW in the millimeter wave range are
possible only at the wave numbers k > 150 cm−1. The
main obstacle for the realization of the wave collapse in
the millimeter wave range is the wave dissipation. In the
YIG films under quite high values of the bias magnetic

fields the wave collapse of the nonlinear SDW is possible.
In the hexaferrite films under the realistic parameters,
the wave dissipation prevents the wave collapse; an oc-
currence of the spatial solitons only is possible there. The
additional focusing of the input SDW pulses can lead to
increasing nonlinear compression of the pulse.
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