
Vol. 119 (2011) ACTA PHYSICA POLONICA A No. 4

Physical Aspects of Microwave and Radar Applications

Sparsity-Based Modelling of Compact Target Echo
in PCL Radar

J. Misiurewicz∗

Institute of Electronic Systems, Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland

A passive coherent location radar makes use of transmitters already present in its environment that illuminate
the surveyed area. A passive radar consists solely of a receiver that collects the waves reflected from objects
of interest (targets in radar terminology) and correlates them with a direct wave from the transmitter. As
the illumination is continuous, the radar suffers from near-far effect: strong echoes from near objects blind the
detector from detecting weaker echoes of far objects. This may be mitigated with CLEAN method, which,
however, requires precise strong echo modelling to be effective. The paper presents a method for accurate
modelling of an echo in case of compact target — i.e. when signal bandwidth is insufficient for accurate
resolving the target details. The method is based on the assumed sparsity of the target, which is usually
adequate, as a typical object acts as a small number of point scatterers with respect to radar waves. The mod-
elling method is analyzed with respect to the residual power after removal of modelled echo from the original signal.

PACS: 84.40.Xb

1. Introduction

In a passive coherent location (PCL) radar, the target
is illuminated with a broadcast signal from the transmit-
ter of opportunity, and the radar receiver makes “para-
sitic” use of the transmitted signal [1, 2]. The sounding
(illuminating) signal is deterministic from the transmit-
ter’s operator point of view, but its content is not con-
trolled from the radar side. Moreover, its properties are
not shaped intentionally for the use as location signal. In
the literature, it is usually assumed that the signal is ran-
dom with approximately white spectrum in the transmis-
sion band [3]. Spectrum whiteness is a desired property
of the illuminating signal, thus modern digital modula-
tion schemes (e.g. defined by digital television standards)
ease the PCL radar design [4].

A PCL radar operates with bistatic geometry — the
transmitter and receiver are located in different points
in space (see Fig. 1). Thus, the measurement of delay
between the emission of the signal and reception of the
echo allows us to calculate the bistatic range to the ob-
ject, defined as the sum of transmitter–object and object–
receiver distances rto + ror. The delay is measured with
help of the reference channel that supplies the informa-
tion on the transmitted signal. Typically, the reference
channel consists of an additional antenna directed to-
wards the transmitter and connected to an additional
radio receiver. In this setup, the delay between the ref-
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erence antenna signal and measurement antenna signal
is actually proportional to rto + ror − rtr. To calculate
the bistatic range, rtr must be known — the knowledge of
geographical location of both the transmitter and receiver
is necessary. The change of bistatic range is causing the
observed Doppler shift in the received signal frequency.
In all the following, if it is not marked otherwise, we
will understand range and velocity notions as the bistatic
ones.

In a PCL radar setup, the transmitter of opportunity
and radar receiver are active continuously. In the result,
strong echoes of near targets are present at the receiver
simultaneously with weak echoes of far targets, which
makes the detection of the weak echoes difficult.

A detector in a passive radar correlates the signal re-
ceived from the measurement antenna with a template

Fig. 1. Bistatic geometry of PCL radar sensing.
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constructed from the reference signal, then a thresholding
procedure is applied in order to detect correlation peaks.
Typically, the reference signal is captured with an an-
tenna directed towards the transmitter, so it is disturbed
with reception noise. Moreover, if the target moves, the
received signal is not a copy of the transmitted signal.
The Doppler effect produces carrier shift that results in a
received baseband signal modulation; also, the complex
envelope of the signal is contracted or dilated in time.
The first effect is usually compensated for with a mod-
ulation of the template, which leads to the construction
of a bank of matched filters designed for different target
velocities. The second effect may be neglected unless the
integration time in the processor is very long.

At the output of a correlation processor a range-
Doppler correlation function is calculated, with maxima
indicating possible targets. A strong echo produces a
distinct peak accompanied by significant sidelobes in the
correlation function. Thus, a weaker echo may be masked
by these sidelobes.

The problem of near and far target echo separation is
also present in a typical active CW radar with linear fre-
quency modulation, but it can be dealt with by simple
filtering of the received signal, as the echoes are also sep-
arated in frequency. In passive and noise radars which
use correlation receivers and noise-like wave forms, the
problem is more complex.

In the past, many methods of unwanted signal removal
originating from the CLEAN technique have been pro-
posed. The CLEAN technique, introduced in 1970’s for
the reconstruction of blurred radioastronomy images [5],
is based on subtracting the modelled echo of a point
scatterer from the signal. A similar ground clutter and
crosstalk signal removal procedure for a noise radar was
proposed in [6] and [7].

The removal of a strong target echo with an adaptive
technique and a point-like scatterer model was proposed
in [8] for a passive radar.

As seen in Fig. 2, CLEAN processing consists of detect-
ing a strong echo, estimating its parameters, modelling
an ideal echo with given parameters and subtracting it
from the signal. The resulting signal — with strong echo
cancelled — undergoes the detection once again, to reveal
weaker echoes.

Fig. 2. The idea of CLEAN processing in PCL radar.

In order to obtain good cancellation of an echo, high
accuracy of target range and the Doppler shift estimation
is necessary. The experiments [9] show that the proposed
procedure of successive echo removal fails in the case of
two point scatterers positioned very close on the range-

-Doppler plane; they are detected as one echo, and the
remainders after the removal of this echo are not mod-
elled properly. In the effect, the improvement of the weak
target detection is limited to just few dB.

A typical man-made target viewed in radar wavelength
of several GHz consists of a small number of dominant
scatterers, formed at edges or at dihedral structures
(Fig. 3). Other parts of the target form much weaker
echoes which do not play a role in masking.

Fig. 3. Typical location of strong scatterers in a target.

In this paper, a method based on a joint modelling of
a multipoint target echo is proposed. It is shown that
simultaneous modelling of several point scatterers allows
us to remove a complex echo more cleanly.

2. Problem formulation
In a PCL radar the illuminating signal is modelled as

a continuous-wave signal with noise-like modulation of
carrier. The bistatic range to the target is then estimated
by finding a maximum of crosscorrelation between the
received echo signal and a copy of the transmitted signal
retrieved from the reference channel.

The crosscorrelation calculated from a finite-time seg-
ment of the signal has a form of a distinct peak and a
noise floor. To fight the effect of masking weak echoes by
the noise floor of strong echo, CLEAN procedure is used.

2.1. Received signal model
Let us express the transmitted signal in the form of a

band-limited noise (or pseudo-noise) envelope xT(t) mod-
ulating the carrier of frequency Fc:

XT(t) = xT(t) cos(2π jFct) . (1)
The bistatic range r from a radar to a moving tar-
get can be approximated with a linear function of time
r = r0 + vt, where v is the bistatic component of the ob-
ject velocity. The received echo of a single target will be
delayed by td = 2r

c = 2r0+2vt
c . The delay will show up on

the receiving side as the carrier phase change and Doppler
shift, and as the envelope delay and stretch. In the fol-
lowing, complex value A0 denotes the amplitude change
of the received signal, incorporating all the attenuation
in the propagation and reflection, and also phase change
at the reflection. The ξ(t) represents the additive noise
in the received signal

XR(t) = A0XT(t− td) + ξ(t)

= A0xT(t− td) cos(2π jFc(t− td)) + ξ(t) . (2)
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In the demodulation process, the signal is shifted in fre-
quency to the baseband. The demodulated signal can be
represented as a complex function of time

xR(t) = A0xT(t− td)e−2π jFctd

= A0xT

(
t− 2r0 + 2vt

c

)
e−2π jFc

2r0+2vt
c . (3)

For the simplicity, we drop the additive noise in the
above equation.

The velocity-dependent envelope stretch 2vt/c can be
neglected — it is important only with long observation
times and high object velocities. Finally, the signal re-
flected from a set of N reflecting points can be expressed
as

xRN (t) =
N∑

i=1

AixT

(
t− 2ri

c

)
e−2π jFc

2vit

c , (4)

where we incorporate the initial phase shift e−2π jFc
2ri

c

in a complex value of Ai.

2.2. The receiver

In the receiver, a matched filter for the expected echo
signal is constructed from the reconstructed transmitted
signal template. Such a filter with the impulse response
length (integration time) of Ti is theoretically produc-
ing the gain of BTi in the reception of a signal, having
band width of B, in the presence of white noise. A filter
for a Doppler shifted signal is obtained by modulating
the template with the Doppler frequency. The operation
of a receiver matched filter, or correlation processor is
described by the following equation (envelope stretch ne-
glected):

y(r, v) =
∫ Ti

t=0

xR(t)x∗T

(
t− 2r

c

)
e j 2πFc

2v
c t dt . (5)

Local maxima of the output function y(r, v) are declared
as detected targets.

Usually, the processing is done by digital means, so the
discrete-time equivalent of the above equation is evalu-
ated for a discrete set of values of the delay r0 and ve-
locity v.

2.3. Masking effect

The object is illuminated with a continuous-wave band
pass signal with band width B and transmitted power PT

usually defined by relevant standards of radio frequency
usage. The reflecting property of the object is usually
reduced in analysis to a single figure S called effective
radar cross-section (RCS) expressed in m2. The received
power is then described by a formula

PR =
PTGTGRSλ2

(4π)3r2
tor

2
or

, (6)

where GT and GR denote gains of transmit and receive
antennas, λ is the carrier wavelength, rto or ror denote
the distance between transmitter and object or between
object and receiver.

It can be seen from this equation that in practice the
received echo is usually very weak. The ability to detect
far object echo is a result of correlation processing with
long integration time Ti, which enhances the signal to
noise power ratio by BTi. Due to noise-like (wide-band
and non-periodic) structure of signal, this product may
attain values as high as 50 dB (105 in linear scale). With
detection threshold set at 15 dB over the noise level at
the correlator output, the weakest detectable signal at
the receiver input may be even 35 dB below the noise
level.

The correlation receiver described by (5) is optimal in
the MS sense for one point target echo present in the
received signal. We will further study a more complex
case, when one strong echo originating from a nearby
target and one weak echo originating from a far target
are present. Then, detection of the first, strong echo will
be performed properly, but the output of the correlation
receiver tuned to the weak echo delay and velocity will
be disturbed by the strong interference caused by the
first echo. As the transmitted signal has the properties
of noise, the effect will be equivalent to raising the noise
floor for the detection of the weaker echo. In the range-
-rangDoppler plane it may be also viewed as the sidelobes
of the strong echo. The correlation receiver described
by (5) is optimal in the MS sense for one point target
echo present in the received signal. We will further study
a more complex case, when one strong echo originating
from a nearby target and one weak echo originating from
a far target are present. Then, detection of the first,
strong echo will be performed properly, but the output
of the correlation receiver tuned to the weak echo delay
and velocity will be disturbed by the strong interference
caused by the first echo. As the transmitted signal has
the properties of noise, the effect will be equivalent to
raising the noise floor for the detection of the weaker
echo. In the range-Doppler plane it may be also viewed
as the sidelobes of the strong echo.

With raised noise floor, an effective range of detection
for a weak echo is reduced. This is called masking effect
in the literature [8].

Fig. 4. Reduction of PCL radar detection range in
presence of a strong unwanted echo.
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The problem is depicted in Fig. 4. In order to alleviate
the problem of many independent variables, the follow-
ing normalization was made. The range variable in the
plot rs is a geometric mean of rto and ror, normalized
to its maximum value rs max still allowing the detection
of an object with given radar cross-section of S0. Thus,
effective (reduced) range reff could be calculated with
assumption that a strong reflecting object of RCS equal
to S is positioned at the distance of rs. The detection
threshold of 15 dB above noise level was assumed with
integration gain BTi equal to 50 dB.

2.4. Strong echo cancellation

If the strong echo is removed from the received signal,
also the processing noise of this echo is cancelled. The
basic procedure of removing the strong echo from the
signal is based on the idea of CLEAN processing used in
radioastronomy. First, a strong target is detected and
its position r1 and velocity v1 are estimated from the
coordinates of the maximum of |y(r, v)|. Then, the esti-
mated r̂1, v̂1 and the amplitude Â1 = y(r̂1, v̂1) are used
for modelling the target echo. Finally, the modelled echo
is subtracted from the received signal,

x
(1)
R (t) = xR(t)− Â1xT

(
t− 2r̂1

c

)
e−2π jFc

2v̂1t
c (7)

and the weaker target may be then detected in the
“cleaned” signal Y . The process may be repeated sev-
eral times to detect and remove all the echoes that are
strong enough to cause interference.

The effectiveness of the removal may be assessed with
the residual power level after the subtraction of the echo
in the case of only one echo present in the signal. It is
usually desired that the residual power level be as low
as −40 or even −60 dB with respect to the strong echo
power, so that in the real case the residual noise-like sig-
nal remains well below the thermal noise floor. Such an
exact removal requires very accurate estimation of the r̂1

and v̂1 usually with the accuracy much better than one
range or velocity cell.

Figure 5 shows the effectiveness of the removal with re-
spect to the accuracy of range estimation [9]. The resid-
ual power Perr has been normalized to the initial strong
echo power P0. In has been plotted versus the range esti-
mation error rerr normalized to the radar range resolution
cell ∆r = c/B, where B is the illuminating signal band
width and c is the electromagnetic wave velocity.

In practice, a numerical minimization procedure is fre-
quently used here to find a residual power minimum. The
procedure is effective if the target can be modelled as a
single reflecting point.

2.5. Complex target

The above removal procedures can be effective if the
assumption of the point-like nature of target is true and
the strong scattering points are well isolated. If, however,
two or more scattering points of similar amplitude are po-
sitioned close together (they are not resolvable due to low

Fig. 5. Residual power after cancelling strong echo
with poor range estimate.

band width of the sounding signal, although they are well
separated with respect to carrier wavelength) and their
echoes interfere in the sampled signal in a non-orthogonal
way (i.e. in the distance comparable to a radar resolution
cell). Both the |y(r, v)| maximum search and the residual
power minimum search procedures usually find a point
“between” these targets on the range-Doppler plane. The
removal of such an echo is much less effective, and the
residuals also do not fit well into the point echo model —
so the successive removal iterations do not “clean” them
well. This happens when target details are closer to-
gether than the velocity of light times reciprocal of band-
width, ∆r < c/B. Such a target will be called “compact”
in the sequel.

With sufficient band width, a noise-like correlation
structure of the signal would permit separate modelling
of point reflectors, as their contributions would be quasi-
-orthogonal. In the insufficient band-width case the com-
pact, complex echo components must be modelled in a
joint approach.

2.6. Target model

We assume that the target consists of a small num-
ber of point-like reflectors located (in the bistatic range
dimension) within one resolution cell, i.e. closer to each
other than c/B, where B is the sounding signal band
width and c is the velocity of the electromagnetic wave.
Thus, the target impulse response h(n) is modelled as a
series of Akδ(t− tk) components,

h(t) =
K∑

i=1

Akδ(t− tk) , (8)

where Ak is a complex reflection factor (describing ampli-
tude and phase of the reflection from i-th point reflector)
and tk is the bistatic delay associated with the reflector
position.

Signal processing in a PCL radar usually takes place in
the base band, after demodulation from the radio band.
In the following we will consider base-band representa-
tion of relevant signals. To simplify the analysis we will
also leave out the problem of the Doppler shift in the
received signal.
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The impulse response of the base-band representation
of a target will include in Ak factors the phase compo-
nent associated with reflection, together with the phase
factor associated with delay of the carrier wave by tk.
The received echo of K-point scatterer can be described
as

y(t) =
K∑

k=1

Akx(t− tk) = x(t) ∗ h(t)

= x(t) ∗
K∑

k=1

Akδ(t− tk) , (9)

where x(t) and y(t) are complex base-band representa-
tions of the transmitted and received signals respectively,
h(t) represents the impulse response of the target, and ∗
is a convolution operator. It must be noted that in a PCL
receiver the x(t) signal is practically obtained by radio re-
ception from the reference antenna, so it is known with
accuracy limited by the addition of some noise.

The relation (9) might be rewritten in the frequency
domain as

Y (ω) = X(ω)
K∑

k=1

Ak e− jωtk = X(ω)H(ω) . (10)

If we model X(ω) as a realization of white noise filtered
to the band width of (−ωg,+ωg) where ωg = 2πB/2
we can see that Y (ω) contains only the low-pass part
of the information about Ak and tk. We cannot restore
the components of h(t) exactly, due to noise in measured
signals. Thus the goal of the modelling process is to
find, without engaging too much computational power,
a relatively simple model that allows to reconstruct a
signal ĥ(t) that is a good approximation of h(t) in the
band width of interest (−ωg, +ωg). If we take the error
power as the quality measure, we may calculate it in the
spectral domain as

Perr =
∫ ωg

−ωg

∣∣∣h(ω)− ĥ(ω)
∣∣∣
2

dω . (11)

2.7. Model reconstruction problem

The problem of finding the target model — i.e. de-
termining the values of Ak and tk (k = 0 . . . K) in (9)
— is nonlinear with respect to rk, moreover the number
K is unknown. It may be solved with a nonparametric
method — by discretizing the frequency variable ω in the
interval (−ωg, +ωg) and assuming that delays tk belong
to a set of M discrete points tm uniformly sampling the
interval reflecting the expected object spread. The de-
lay discretization step size should respect the required
accuracy of tk estimation.

Knowing Y (ω) and X(ω) at the discrete ω values one
may construct a system of linear equations with un-
knowns Am corresponding to the reflectivity values at
assumed discrete tm delays. This system can be solved
in the mean squares (MS) sense, and the solution mini-
mizes MS error in discrete frequency points.

This approach has, however, some important draw-
backs. First, in order to obtain good strong echo removal,
the number M of delay discretization points should be
from 100 to about 1000 (see Fig. 5). Second, the system
may be ill-conditioned due to strong dependence between
succesive samples in delay domain. The solution will be,
in effect, very sensitive to noise in the signal as well as
to other echoes out of the considered range interval. Fi-
nally, the MS solution need not reflect the desired model
— usually most Am will have significant magnitudes.

Another approach is a parametric one. Assuming small
number K of components one may find Ak and rk by
minimizing error using numerical optimisation methods.
Also, usage of methods from the domain of frequency es-
timation may be considered (e.g. MUSIC type methods).

With parametric approach the key element is to prop-
erly assume the number of components K. Each compo-
nent is represented by 2 parameters (one of them com-
plex) which contribute to the computational complexity.
The complexity increases again when target velocity is
added to the parameter set.

It has been shown in [9] that usually up to 3 points in
the model suffice to achieve desired removal quality —
this is a result of strong dependence between responses
of closely spaced reflectors.

This observation leads to the application of sparsity-
-based methods. It is known [10] that many inverse prob-
lems unresolved with band-limited signal model may be
resolvable with assumption of sparse signal model. Re-
cent developments in the convex optimization program-
ming [11, 12] have provided efficient ways of solving
sparse reconstruction problems using fast numerical al-
gorithms.

2.8. Reconstruction based on sparsity assumption

Sparsity of signal model is defined as the ability to
represent the signal y(t) with a linear combination of M
basis vectors ψm(t):

y(t) =
M∑

m=1

Amψm(t) , (12)

where the number of non-zero Am coefficients (usually
denoted by ||A||0, however it must be underlined that
||·||0 does not have all properties of a norm) is much lower
than M . The set {ψm} is sometimes called a dictionary.

The reconstruction problem is then posed as finding
the unknown Am coefficients from known samples of y(t),
taken at known instants tn. In the following we will de-
note by y the column vector of y(tn). We will also use
the symbol of P to denote a matrix constructed with all
the ψm(tn) as the consecutive rows. Thus, our knowledge
about the signal can be formulated as

y = Pa , (13)
where a is the column vector of unknown Am values.

Using the knowledge that a signal is sparse, it is pos-
sible to reconstruct a with much lower number of time
samples in {tn} than dictated by the Nyquist theorem.
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Contrary to well-known parametric methods of recon-
structing linear combinations of signals with known mod-
els (e.g. MUSIC) it is not necessary to know the ||a||0
value a priori.

It should be, however, noted that not all choices of
sampling instants allow the reconstruction [10].

The methods used to reconstruct sparse signals are
based on searching for ã that minimizes the `1 norm
||ã||1 =

∑
m |ãm| and fulfills the condition of Eq. (13).

The usage of `1 norm to promote low sparsity value ||ã||0
has been adopted in many sparse reconstruction tech-
niques [13], as direct minimization of ||ã||0 is an non-
deterministic polynomial-time hard (NP-hard) problem.

In the passive radar application, the dictionary of ψm

vectors is equal to the set of the template signals x(t−τm)
with discretized delays τm.

The reconstruction problem in PCL has to be solved
in the presence of noise. Remembering that the main
purpose of model reconstruction is the cancellation of
strong echo, we will understand that the noise component
models weaker echoes (uncorrelated with the strong one)
as well as ordinary receiver noise.

The presence of noise makes the exact fulfillment
of Eq. (13) practically impossible. However, the noise
may be assumed uncorrelated with the dictionary com-
ponents. In conclusion, the exact equality should be re-
placed by approximate equality with sufficiently low MS
error.

In the sparse reconstruction community the (13) prob-
lem relaxation in the presence of noise is called least ab-
solute selection and shrinkage operator (LASSO). First
variant of this problem (a “constrained norm” variant) is
formulated as follows [10]:

min ||ã||1 subject to ||P ã− y||2 ≤ ε . (14)

A second variant (a “scaled norm” one, also called “ba-
sis pursuit denoising”) is formulated as

min(||P ã− y||22 + λ||ã||1) , (15)

where λ parameter accounts for balancing between re-
construction accuracy and sparsity.

In PCL radar the power of noise component is not
known a priori, so it is more justified to use the “scaled
norm” variant of posing the problem.

3. Experimental results

In order to confirm the ideas presented in the above,
a series of experiments has been performed. A received
signal has been simulated with a known compact echo
model, using sampling frequency 200 times higher than
the band width of sounding signal. With this oversam-
pling, it was possible to simulate the fine-grained struc-
ture of the reflecting target. Next, the signal has been
downsampled to reflect typical sampling conditions in a
radar, with the sampling frequency approximately equal
to doubled band width.

Then, the structure of the target echo has been recon-
structed with several methods and the quality of recon-
struction has been assessed by comparing the estimated
ã to the known value a and also by calculating power re-
maining after removing the reconstructed echo from the
original signal (according to the CLEAN method). With
the ideal reconstruction, the remaining power would be
equal to the power of background noise used in simulating
the signal.

First method of reconstruction, used as a starting
point, was a least squares method with assumption of
one reflecting point located on the original (coarse) range
sampling grid, i.e. with only a0 as a nonzero coefficient
in (13).

Another method used as reference was a full least
square (LS) approximation, finding ã value that mini-
mizes ||P ã−y||2. This is a parametric method and num-
ber of discretization steps M was chosen equal to 20.

Fig. 6. The ak sequence recovered with full LS solution
(absolute values plotted).

Fig. 7. The ak sequence recovered with sparse search
(absolute values plotted).

Finally, a sparse solution has been sought. Due to nu-
merical implementation problems, convex optimization
has not been used (this is planned for further research).
Instead, solutions with increasing sparsity value ||ã||0
(starting from one) have been found, corresponding ||ã||1
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Fig. 8. Matched filter output after CLEAN (sparse
model recovery), 3 scatterers, sparsity=3.

Fig. 9. Error power (Monte Carlo mean and standard
deviation limits), target sparsity=2.

and reconstruction MS errors evaluated and plotted. The
search was also based on M = 20, i.e. the modelling tem-
plate set had 20 elements.

It must be underlined that the simulated locations
of reflectors were not chosen on the discretization grid.
Background noise level was set to −60 dB with respect
to the total power of the target echo.

An example of recovery results is shown in Fig. 6 (re-
covery with full LS approximation) and Fig. 7 (recovery
with sparse model), where absolute values of complex am

coefficients are plotted. Simulated number of reflectors
is 3, their positions and strengths are marked with tri-
angles. For LS method, the vertical axis is presented
in logarithmic (decibel) scale to show values differing by
orders of magnitude in one plot.

Results of applying CLEAN procedure with recovered
echo model are shown in Fig. 8. The magnitude of
the output signal from a matched filter applied to the
CLEAN’ed signal is plotted. For the reference, also
the output for the original received signal (before the
CLEAN) and the output with coarse modelling of the
echo (with scatterers modelled on range cell grid) is
shown.

Fig. 10. The `1 norm of am sequence (target
sparsity= 2).

Fig. 11. Error power (Monte Carlo mean and standard
deviation limits), target sparsity=3.

First, the coarse method gives just about 10 dB of im-
provement in the CLEAN procedure. Only the zeroth lag
of crosscorrelation is cancelled completely. Clearly, fine-
-grained modelling is necessary to obtain better results.

Next, it is clear that the LS method is inefficient —
the recovered model fits the data, so the CLEAN results

Fig. 12. The `1 norm of am sequence (target
sparsity= 3).
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Fig. 13. “Scaled norm” cost function, target
sparsity= 3.

can be good, but the ãm values are huge and they do
not reflect the simulated model. With obvious lack of
orthogonality between template matrix columns, the LS
solution was very sensitive to the added noise.

Sparse solution, on the other hand, gives good re-
sults with CLEAN with good approximation of the echo
model. It may be noted that the approximation quality
increases when the number of non-zero ãm values (||ã||0)
approaches the actual number of scatterers in target. The
noise level limits the improvement at −60 dB, and with
higher ||ã||0 also the absolute values of ãm rise quickly.

Monte Carlo simulation results are shown in next fig-
ures. Targets with different number of randomly located
scatterers were simulated. The results of approximating
the signal with sparse model are shown. In each pair
of figures the number of scatterers is constant, and re-
sults of 30 experiments are averaged. The approxima-
tion power (Fig. 9 and Fig. 11) and ||ã||1 norm of the
approximation coefficients (Fig. 10 and Fig. 12) is plot-
ted versus the number of scatterers in the model. Again,
the approximation quality improves with ||ã||0 increase,
but ||ã||1 rises sharply when the model order is higher
than the actual number of scatterers.

When we compare the behaviour of MS error of mod-
elling and `1 norm of the am sequence, we can see that
a cost function can be defined combining these norms to
obtain a minimum at the solution sparsity equal to the
actual number of strong scatterers. This is equivalent to
the “scaled norm” problem (see Eq. (15)). Such a cost
function with λ parameter set to 10−4 is shown for the
case of 3 scatterers (Fig. 13). Minimizaton of this cost
function would lead to solutions that approximate the
actual model well.

4. Conclusions

The idea of sparse reconstruction of compact target
model in a PCL radar has been presented and verified in
simulations.

The results of simulations show that sparse modelling
of the strong target leads to good result of applying
CLEAN procedure in order to detect weaker targets.

Application of the presented results requires the imple-
mentation of the recovery process with effective methods
for minimizing simultaneously the modelling error and
`1 norm of model coefficients. This is the area of con-
vex optimization methods, which are witnessing a break-
through in a wide variety of topics, and their application
to the presented task may enable real-time processing
with model recovery.
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