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The paper presents a novel approach, based on the wavelet decomposition and the learning vector quantisation
algorithm, to automatic classification of signals with linear frequency modulation, generated by radar emitters.
The goal of radar transmitter classification is to determine the particular transmitter, from which a signal
originated, using only the just received waveform. To categorise a current linear frequency modulation signal
to the particular transmitter, the discrete wavelet decomposition of the received signal is accomplished in order

to get a representative set of features with good classification properties.

The learning vector quantisation

algorithm with a previously defined set of features as an input of the learning vector quantisation neural net
is proposed as the intelligent classification algorithm, which combines competitive learning with supervision.
After the learning process, the learning vector quantisation algorithm is ready to perform the classification
process for different data than data used in the learning stage. Simulation results show the high classification
accuracy for experimentally chosen wavelets and suggested architecture of the learning vector quantisation classifier.

PACS: 84.40.Ua, 84.35.+i

1. Introduction

Emitter classification based on a collection of received
radar signals is a subject of wide interest in both civil
and military applications. The received signals usu-
ally consist of sequences of pulses with complex signals,
such as linear frequency modulated, phase-shift keying
(PSK) - and frequency-shift keying (FSK)-modulated sig-
nals et al., due to their use in low probability of inter-
cept radar systems. The dense, complex, contaminated
and continuously changing signal environment makes the
classification process extremely difficult. Conventional
algorithms of emitter identification are basically match-
ing techniques, which perform a sequence of tests com-
paring measured values of a parameter with parameter
values of emitters previously gathered in the library. For
classification of radar signals, traditional methods often
use radar signal parameters such as pulse amplitude,
pulse width, radio frequency and time of arrival. In to-
day’s complex environment such methods often collapse
or cannot work effectively. Therefore, in order to perform
automatic classification, a novel approach is strongly re-
quired [1, 2].

In this paper the classification procedure is focused
on transmitters generating signals with linear frequency
modulation (LFM). Experiments have been performed
only in simulation environment and only the signal model
has been exploited to assess the capabilities of the new al-
gorithm. There are no limitations on using the presented
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algorithm for other classes of modulated signals. It is
assumed that the intercepted LFM wave forms with dif-
ferent slopes of linear frequency modulation are assigned
to different radar emitters (different classes). A key prob-
lem is to find a set of discriminative features which can
distinguish such defined signals and classify them to a
particular emitter regardless of non-stability of the slope
(small changes of the slope) and noise distortions.

In the proposed approach, the discrete wavelet decom-
position is used for extraction of characteristic features.
Unfortunately, the wavelet decomposition generates a lot
of data, so dimensionality reduction has to be performed.
In this study a low dimension feature vector is formed
by aggregation of properties of wavelet coefficients. Ex-
tracted features are processed by a classifier to select the
most probable class. The supervised classification is con-
sidered where classes are known beforehand, and feature
samples of each class are available.

The extraction of features from wavelet decomposition
has to carry out three assumptions:

e the features should be obtained easily so as to speed
up the whole process,

e the features should be in a low-dimensional space
to reduce the computational complexity,

e the features should be discriminative.

In this manuscript the feature vector is an input of
an intelligent classifier, based on the vector quantisation
concept. The learning vector quantisation (LVQ) neural
network has been chosen because of its ability of learning
data classification, where the similar input vectors are
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grouped into a region, represented by a so-called coded
vector (CV).

2. LFM signals

The goal of radar transmitter classification is to de-
termine the particular transmitter, from which a LFM
signal originated, using only one received wave form. No
localisation information is exploited to accomplish this
task. Let us consider a single LFM signal in the inter-
val [0, T]. The complex envelope of such a signal can be
written as

s(t) =exp(jo(t)), 0<t<T, (1)
where the phase function ¢(t) = by + byt + bat? is the
second order polynomial. The instantaneous angular fre-
quency can be computed as

w(t) = dﬁigf) = by + 2bot, (2)

where by is an initial frequency. The second derivative of
the phase function ¢(t) is equal to k = 2by. This quantity
called the chirp rate or the frequency slope is related to
the time duration 7" and the band width B of the signal
as follows [3]:
B
k= iT . (3)
In this study only the discrete sequence of samples of
a LFM signal achieved by the sampling of the continuous
wave with the sampling period AT = T'/N is examined.
A discrete time version of the length N of Eq. (1) can be
written as a discrete expression

s(n) = exp(j(bo + bin + ban?)),

n=20,1,2,3,...,N—1. (4)
In the real scenario only the collection of LFM signals
generated by a particular emitter is needed to create
database rich enough for extracting unique properties of
signals for training and testing steps of the neural clas-
sifier. If radar emits generated signals with a different
kind of frequency modulation such as LFM-, PSK- or
FSK-modulated, the classification process would be con-
siderably easier because classes of signals are significantly
different. The proposed classification method concerns
only LFM modulation with a different chirp slope gener-
ated in simulation environment. It is assumed that each
transmitter generates signals with the same parameters
bo and by, but the frequency slope parameter described
by the parameter bs is a specific value for an individual
transmitter. Let us denote the frequency slope k as
fnormf - fnormi
k= 2by = —N_1 (5)
where fhormi and fuorms are normalised frequencies ly-
ing in the range [—0.5, 0.5] with respect to the sampling
period (ratio of the frequency in hertz to the sampling
frequency, with respect to the Shannon sampling theo-
rem). This signal is called a chirp, and as its frequency
content is varying with time, it is a non-stationary sig-
nal [4]. To simplify further simulations it is assumed that
only the parameter by is a changeable parameter and the

simplified form of LFM signals under considerations can
be written as

s(n) = exp(jbon?). (6)
Automatic recognition of the parameter value by for LEM
signals reformulated as the classification problem can be
also treated as a part of a general problem of automatic
modulation recognition [5].

3. Feature extraction via discrete
wavelet decomposition

In this study, in order to classify the signals, a fea-
ture vector @ is formulated by time-frequency process-
ing of a signal. The main advantage of wavelets is that
they have a varying window size, being wide for slow
frequencies and narrow for the fast ones. Thus it leads
to an optimal time-frequency resolution in all frequency
ranges. Owing to the fact that windows are adapted to
the transients of each scale, wavelets are able to pro-
cess non-stationary signals. LFM signals belong to the
class of non-stationary signals so that wavelet process-
ing is a suitable tool for processing such signals. The
idea of the continuous wavelet transform (CWT) is to
project the signal s(z) on a family of zero-mean functions
(the wavelets) deduced from an elementary function (the
mother-wavelet) by translations and dilations

+oo
Cu(ba; ) = [ §(2) U} o (x) de (7)

where
7 () = o] Y20 (

is a family associated with the one-dimensional, contin-
uous wavelet.

The variable a represents the scale, whereas b is the
translation of the mother-wavelet. Calculating wavelet
coefficients at every possible scale generates a lot of data.
If we choose scales based on powers of two, so-called
dyadic scales (a = 2, b = ja = j2'), we can formu-
late a double indexed family of wavelets v; ;(x) from the
mother-wavelet function in the form

U i(x)=2""2w(Q2 e —j), i€Z jeZ. (9)
It means that the wavelet representation C(a, b) is viewed
as a discrete set of coefficients C(7,j). This is a case of
continuous time, “discrete” analysis. A lot of wavelets
(not all) are associated with their scale functions ¢; ;(z),
which also can be expressed in the indexed form

¢ij(x)=2""p(27x —j), i€Z jeZ.  (10)
It should be noted that the function ¢ (x) can be writ-
ten as an indexed structure ¢(z) = ¥ 0(z) and the scale
function ¢(x) as the structure ¢(x) = @g,0(z), respec-
tively.

The wavelets defined in such a way result in multi-
-resolution decomposition of a signal at different decom-
position levels with different resolutions. Each level of
decomposition is closely associated with the scale index 4.
The fundamental relations between two successive scales

T —

b), a>0,beR, (8)



490 E. Swiercz

are called “twin-scale relations” also known as the dila-
tion equation

d(z) = V2 Z h(j)o(2x — j) . (11)

A scale function ¢(z) = ¢o,0(x) is a linear combination of
scale function which can be expressed as an indexed form
$(2x —5) = 27124 _, ;(x) according to the relation (10).
Additionally, the wavelet equation for the wavelet func-
tion ¢¥(z) = 1g,0(x) is defined as a different linear com-
bination of scale function

¥(z) = \@Zg(j)fﬁ(?x*j) (12)

A sequence h(k) can be treated as the finite impulse
response (FIR) low-pass filter and a sequence g(k) as the
FIR high-pass filter.

The wavelet decomposition is usually defined in the
equivalent way by a collection of detailed coeflicients d; ;
also called ¢D coefficients in MATLAB environment and
approximation coeflicients a; ; called cA coeflicients, re-
spectively. Coefficients at different levels of decomposi-
tion are generated through the h(k) filter for approxima-
tion coefficients and through the g(k) filters for detailed
coeflicients. A collection of coefficients using the multi-
-resolution approach defines the discrete wavelet trans-
form (DWT). The decomposition algorithm starts with
the signal s(z) and two sets of coeflicients: approxima-
tion coefficients cA1 and detailed coefficients cD1 are pro-
duced, then it calculates the successive levels of decom-
position. The signal s(z) at the M-th level of decompo-
sition can be written as

M
su(@) =Y a1 jomari(@) + Y digr; i j(x).
7 =0 (13)
Features for the classification task have been searched
among some aggregated properties of wavelet coeffi-
cients at different levels of decomposition for different
wavelets [6-9].

Numerical experiments have been run in MATLAB en-
vironment, so a discrete form of a signal of the length NV
has been used. It has been assumed that M is the ref-
erence level of decomposition. The MATLAB function
wavedec performs multi-level decomposition and returns
for each level of decomposition the wavelet decomposition
vector containing one set of approximation coefficients
cA;j of the length nA (j = 1,...,nA) and a few sets of
detailed coefficients c¢D; ; for i = 1,..., M with the ap-
propriate length related to the level [9]. The MATLAB
function wenergy has been used for computing the energy
E, (a scalar number), which is the percentage of energy
corresponding to the approximation [9]. A vector Eq of
the length M contains the percentages of energy corre-
sponding to the detail. Having the full wavelet decompo-
sition (all cA, ¢D coefficients) the following aggregated
properties have been proposed:

Energy E:

M
E. + ZEd =100.
i=1
Cmean: Mean values of decomposition coefficients in a

decomposition tree (a hierarchical structure of decompo-
sition levels)

CAmean =

— for approximation coeflicients,

1 nD;
cDieani = wD; Z cD;
7=1
— for coefficients at detailed levels, i =1,..., M.

Cabsmean: Means of absolute values of decomposition
coeflicients in a decomposition tree

1 nA
CAabs :—Z CA;
absmean nA 1| ]|
i=

— for approximation coefficients,

1 nD;
CDabsmean,i = nD; Z |CDiyj|
Jj=1
— for coefficients at detailed levels, i =1,..., M.

Power-mean: Average power (squares) of decomposition
coeflicients in a decomposition tree

1 nA
2
cApow = i Z (cAj)
j=1
— for approximation coeflicients,
1 nD
Do i = —— D, )2
Clpow,i nDi;(c i)

— for coefficients at detailed levels, i =1,..., M.
Evar: Variances of decomposition coefficients in a decom-
position tree

nA
2
CA’4var = Z (CAj - CAmean)

Jj=1

— for approximation coefficients,

nD;
2
CDvar,i = Z (CDi,j - CDmean,i)
j=1
— for coefficients at detailed levels, i =1,..., M.

Ratio: Ratios of means of absolute values of decomposi-
tion coefficients in adjacent sub-bands in a decomposition
tree (for coefficients at detailed levels only)

CDabsmeanratio,i

1 nD;t1 1 nD;
= nDy Z lcDiy1 / TDZ,Z|CDM

j=1 j=1
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— for coefficients at detailed levels, i =1,...,
M —1.

From the set of quantities proposed above, ones with
the best distinctive abilities are selected to create the fea-
ture vector in the feature space. The feature vector is the
input of a neural classifier, based on the LVQ algorithm
[5, 8].

4. The LVQ neural net

LVQ is a supervised version of vector quantisation [10].
As a supervised method, LVQ uses known target output
classifications for each input pattern. The main idea is
to cover the input space of samples with “codebook vec-
tors” (CVs), each representing a region labelled with a
class. A CV can be seen as a prototype of a class mem-
ber, localised in the centre of a class or a decision region
(“Voronoi cell”). CV can be described as a hidden neu-
ron (“Kohonen neuron”) or a weight vector of the weights
between all inputs and the regarded Kohonen neuron.
A class can be represented by an arbitrary number of
CVs, but one CV represents one class only.

The LVQ neural network is built as a feedforward net
with one hidden layer of neurons (the Kohonen layer),
fully connected with the input layer. Classes for each
input pattern are predefined. During the training stage,
the values of weights used to form the coded vectors are
adjusted, according to the patterns of input samples, in
order to match desired classes. The distance d; of an
input vector & to the weight vector w; of each node in
the Kohonen layer is computed. The node of a particular
class, which has the smallest distance to the presented
input vector (for example the Euclidean distance), is de-
clared to be the winner

The weights will be moved closer to the class if it is the ex-
pected winning class, otherwise they will be moved away

W:{w+a(oc—w), (15)
w —y(x — w).

After the training process is finished, the LVQ network
is then ready for classifying an unknown input. The clas-
sification after learning is relied on finding a Voronoi cell,
specified by the CV with the smallest distance to the in-
put vector and assigning it to the labelled class.

5. Classification of LFM signals

In a real radar scenario the collection of acquired sig-
nals generated by radar emitters being in our interest
is sufficient to perform the complete classification pro-
cess. Acquired signals are usually divided into two parts:
the first for learning and the second for testing. In the
presented paper signals for extracting features, for learn-
ing and for training were obtained only through simu-
lations. Let us assume that LFM signals belong to five

classes w = (w1 we w3 wy ws) related to the five differ-
ent slope coefficients k defined in (3). Each slope coef-
ficient k is closely connected to the frequency, chang-
ing from fhormi tO fonormf during a time interval of a
signal. It has been assumed that the length of simu-
lated signals is N = 256 and fiormi = 0. The nor-
malised frequency fnorms takes values from the following
set, foormt € [0.1 0.2 0.3 0.4 0.5], which imposes values
for the slope coefficient ke, € @ = [2 4 6 8 10] x 1074
These settings do not limit the generality of considera-
tions and are used only for simplification in simulations,
performed in this paper. The actual value of the param-
eter k “around” ke, will be classified exactly as kcen. It
means that if the frequency slope k of a LFM signal gen-
erated by a particular radar emitter slightly changes in a
random way (non-stability of a slope) the classifier will
take a decision to assign this signal to the emitter with
the nearest value of keep.

The training data representing each class has consisted
of the set of 205 LFM signals (41 per each class) ob-
tained by changing k in the range [~5 x 107°, 45 x 107
around keen, € © with the step equal to 2.5 x 1076, It is
worth pointing out that the algorithm is performed for
very small values. This means that considered signals are
closely-spaced chirp signals from the numerical point of
view.

The goal of the classifier is the selection of the most
probable value of the element from the vector @, which
corresponds to the selection of the class w. The five-
-element feature vector as the input vector for the LVQ
classifier has been built from aggregation of features of
the wavelet decomposition.

Detailed examination of the characteristic values pre-
sented in Sect. 3 revealed that combinations of selected
subsets of them are sufficiently good to create the clas-
sification space, i.e. the feature vectors to be passed to
LVQ inputs. From examination of a variety of wavelet de-
compositions, reverse biorthogonal spline wavelets (rbio
family) and the Daubechies wavelets (db family) turned
out to be the most interesting [9].

For the 1bi02.2 wavelet a set of discriminative fea-
tures for all classes has been successfully found. The
feature vector was created from the following quanti-
ties: @ = [Ea(Al), Ed(D1), Cabsmean(D4), var(D4),
Ratio(D2/D1)] which reads: the energy of approximation
coeflicients at the first level of decomposition — with the
short name Fa(A1), the energy of detailed coefficients at
the first level of decomposition — with the short name
Ed(D1), mean of absolute values of detailed coefficients
at the fourth level of decomposition — with the short
name Cabsmean(D4), variance of detailed coefficients at
the fourth level of decomposition — with the short name
var(D4) and ratio of means of absolute values of detailed
coeflicients at the first and the second level of decomposi-
tion — with the short name Ratio(D2/D1). There is not
the only vector of features and a lot of different subsets
of features are possible but the selected one gave good
enough separation between classes for rbio2.2 wavelet.
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Figures 1-6 show examples of characteristic variables
extracted from wavelet decomposition with rbi02.2 em-
ployed up to the level 4th.
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Fig. 1. Selection of energy of approximation Fa(Al)
because of good separation of the 1st class and the 2nd
classes from 3th, 4th and 5th class.
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Fig. 2. Selection of energy of decomposition coeffi-
cients at detailed level Ed(D1), because of its good
class-discrimination properties except separation be-
tween 4th and 5th class.

Except for rbio2.2 wavelet, the dbj and db5 wavelets
were examined because of their potential possibilities of
discrimination between classes. It was surprising that the
vector of features ¢ = [Ea(Al), Ed(D1), Cabsmean(D4),
var(D4), Ratio(D2/D1)] created especially for rbio2.2
wavelet turned out to be good enough for db4 and
db5 wavelets because the classification accuracy obtained
during the training was 100% both for the rbi02.2 wavelet
and for dbj and db5 wavelets.

Testing data are used to test whether the classifier is
able to work also on the data that were not used in the
training process. In real environment, acquired data are
usually divided into a training part and a testing part. In
simulation environment testing data have to be created
numerically. In this paper noisy signals as testing signals
have been obtained by adding the noise signal to LFM
signals used previously in the training step.
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Fig. 3. Selection of variance of detailed coefficients
var(D4), because of good separation of 5th class from
1st, 3th and 4th class.
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Fig. 4. Selection of Ratio(D2/D1) — ratio of means of
absolute values of detailed coefficients at the first and
the second level of decomposition because of good class
separation except the small overlap between 3th and 4th
and 4th and fifth class.
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Fig. 5. Selection of mean of absolute values of de-
tailed coefficients at the fourth level of decomposition
Cabsmean(D4) because of good separation of 5th class
from all remaining classes.
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Fig. 6. Example of bad choice of properties because of
large overlap of all classes.

Testing signals for the generalisation task were gen-
erated by slightly changing values of the parameter k
used previously in the training, providing that new values
stayed still inside the range [-5x 107>, +5x 10~°] around
keen € ©. All examined wavelets demonstrated very
good generalisation properties and classification results
achieved 100% effectiveness. Next the extrapolation abil-
ity was assessed for values of the parameter & which com-
pletely stay outside the interval [~5 x 107, +5 x 10~°].
The border £10~* means that the parameter k& having
such a value can be equally likely assigned to two neigh-
bouring classes. However, good performance of the net-
work outside the training range should not be expected
in any case.

Classification accuracy for noisy signals with increased
variances has been presented in Fig. 7 for the rbio2.2
wavelet, for the db4 wavelet and for the db5 wavelet with
the same set of features

@ = [Fa(Al), Ed(D1), Cabsmean(D4),
var(D4), Ratio(D2/D1)]
for all considered wavelets. It is worth pointing that in
the experiment presented in Fig. 7 the set of features @
was created especially for the rbio2.2 wavelet and it is
not the best choice for the dbj wavelet and for the dbs
wavelet. In Fig. 8 the classification for noisy signals has
been performed establishing the set

Drpioa.2 = [Ea(Al), Ed(D1), Cabsmean(D4),
var(D4), Ratio(D2/D1)]

with the best separating properties for the rbio2.2
wavelet, the set

Paps = [Ea(Al), Ed(D1), Ed(D4), Power-mean(A4),
Power-mean(D4)]

with the best separating properties for the db4 wavelet
and the set

Paps = [Ed(D1), Ed(D4), Power-mean(A4),
Power-mean(D4), Ratio(D2/D1)]

with the best separating properties for the db5 wavelet.
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Fig. 7. Classification accuracy for noisy signals with
one set of features for all wavelets.
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Fig. 8. Classification accuracy for noisy signals with
sets of features for particular wavelets.

As it could be expected, increasing noise variance
causes deterioration of classification. In the case of non-
-noisy signals, 100% classification accuracy has been at-
tained for the same values of the parameter k.

It is obvious that the better class-discriminative fea-
tures for particular wavelets are found, the better clas-
sification accuracy is obtained both in training and in
testing stages.

The purpose of next experiments is to determine the
range of the parameter k for which networks can extra-
polate. Table I and Table II show the classification ac-
curacy for values of the parameter k, which stay outside
the interval (i.e. symmetrically on both sides of the cen-
tral point from © = [2 4 6 8 10] x 10™%), from which the
values for network training have been chosen.

As it can be seen, the classification accuracy for values
k outside the training range significantly decreases.

The wavelet db5 causes some inconvenience because
it shows better classification accuracy for a noisy signal
with the set @45 than with the set @, but at the same
time shows worse classification accuracy in extrapolation
with the set @45 than with the set @. Owing to this
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ambiguity the wavelet db5 should be rejected from con-
siderations. Selection of wavelets and a set of appropriate

input feature variables is an important issue in building
the neural, as well as other classifiers.

J

TABLE I

Classification accuracy [%)] for extended range of parameter variability. Wavelet decomposi-
tion up to 4th level with & = [Ea(Al), Ed(D1), Cabsmean(D4), var(D4), Ratio(D2/D1)] for all

wavelets.
Ranee of parameter Classification accuracy | Classification accuracy | Classification accuracy
& h p of non-noisy signals of non-noisy signals of non-noisy signals

cnanges for rbio2.2 for db4 for db5

(0.5; 0.75] x 107* 91.00% 87.00% 98.00%

(0.75; 1] x 1074 72.00% 65.00% 73.00%

(0.5; 1] x 107* 82.00% 74.00% 84.50%

TABLE IT

Classification accuracy [%] for extended range of parameter variability. Wavelet decomposition
up to 4th level with the set @ fitted to the particular wavelet.

Classification accuracy | Classification accuracy | Classification accuracy

Range of parameter . . . . . .

changes of non-noisy signals of non-noisy signals of non-noisy signals
ges for rbio2.2 for db4 for db5
(0.5; 0.75] x 1074 91.00% 94.72% 86.00%
(0.75; 1] x 107* 72.00% 72.00% 66.00%
(0.5; 1] x 1074 82.00% 83.50% 74.50%
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