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Electrical Transport and Electronic Structure Calculation
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The Harrison first principle pseudopotential technique based on the concept of orthogonalized plane waves has
been used to study the liquid electrical resistivity and other physical properties viz., Knight shift, Fermi energy
and electronic density of states of liquid binary alloys of simple metals. We have also performed a first-principles
calculation of the electronic band structure of Al–Ga binary alloy at equiatomic composition employing the
full-potential linearized augmented plane wave method. Total energy minimization enables us to estimate the
equilibrium volume, bulk modulus and its pressure derivative. We have also described the total density of states
and the partial density of states around the Fermi energy.

PACS: 72.15.Cz, 76.60.Cq, 71.20.−b, 71.22.+i

1. Introduction

Since the past few decades, Al, Ga and their alloys
of very high purity have begun to play a pivotal role as
materials for wide industrial use [1–6]. Straumal et al.
studied the grain growth in high purity Al–Ga alloys at
various Ga-concentrations. Also, the transition from nor-
mal to abnormal grain-growth was investigated in depen-
dence of Ga-content and temperature [7]. Papastaikoudis
et al. [8] studied the temperature dependent part of the
phonon resistivity of dilute Al–Ga alloys. The electrical
conduction theory in the liquid metal using the pseu-
dopotential concept provides an alluring field for inves-
tigating the electrical transport properties of liquid met-
als. The presence of conduction electrons and their in-
teraction with the background of positive ions is treated
through the Harrison first principle (HFP) pseudopoten-
tial technique which is a branch of orthogonalised plane
wave (OPW) formalism first proposed by Herring [9] and
later developed by Philips and Kleinman [10] and oth-
ers. In the present paper, we deal with the structure,
electrical resistivity, the Knight shift, the Fermi energy
and electronic density of states of liquid binary alloy
Al–Ga. The structure factor S(K) needed for the present
computation has been obtained through the hard-sphere
model via the Percus–Yevik (PY) approximation along
the lines of Ashcroft and Langreth [11] and Enderby and
North [12].

The form factor w(k, q) of the constituent metals has
been derived through the well known HFP pseudopoten-
tial technique. From these two ingredients the properties
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under investigation have been computed. In the HFP
pseudopotential technique, the various interacting poten-
tials arrive at thorough fundamental considerations em-
ploying quantum mechanical and statistical mechanical
approaches along with Poisson’s equation. Although the
technique was more rigorous than the model-potential
technique and also free from arbitrariness in choosing a
model or its parameter, it lagged behind due to some
cumbersome calculations involved. However, this was
employed by King and Cutler [13] and Hafner [14] along
with their co-workers. The HFP technique has been
claimed to be superior to the model-potential techniques
as no arbitrary adjustable parameter is introduced and
no arbitrary model is proposed. Further it has input re-
quirements and is based on sound theoretical background
(Harrison [15]).

In spite of various favorable points regarding the HFP
technique researchers found that there are several con-
siderations to be kept in mind while choosing the input
parameters, the most significant among them concerned
the energetic problem. For the computation of the form
factor the important input parameters are the eigenfunc-
tions and eigenvalues of the core electrons represented by
Pnl(r) and εnl (n and l being the quantum numbers of the
core states). The basic characteristics of the pseudopo-
tential technique which distinguishes it from the band
structure calculations is the use of the first-order per-
turbation theory and the factorization of crystal matrix
elements into a form factor w(k, q) and the static struc-
ture factor S(k). Both these ingredients are involved in
all the physical properties studied in this project.

Usually, the research groups in this field obtained these
input parameters from the Herman–Skillman paper [16],
or generated them with some improvement in his pro-
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gram while some authors preferred to use the experimen-
tal eigenvalues. Clementi [17] also published his atomic
structure calculations in which he provided the eigen-
functions and eigenvalues of elements of one-third of the
periodic table.

In the present work, the HFP pseudopotential tech-
nique has been applied to evaluate the partial structure
factors and consequently the electrical resistivity (con-
centration dependence) and other physical properties of
the alloy considered for the study. The full potential lin-
earized augmented plane wave (FPLAPW) method has
been employed to calculate the electronic structure of the
binary alloy.

2. Formalism

2.1. Form factor

The potential-dependent term is called the form factor
w(k, q) = 〈k + q|w|k〉. It is the Fourier transform of the
crystal potential in the reciprocal lattice. The non-local
screened form factor may be expressed as

w(k, q) =
va,b

q + vc
q + vd

q

ε∗(q)
+

[
1−G(q)

ε∗(q)

]
vf

q + WR, (1)

where va,b
q , vc

q, vd
q , vf

q , WR, ε∗(q) and G(q) are the
valence-charge and core-electron potential, conduction
band-core exchange potential, conduction-electron po-
tential, screening potential, repulsive potential, the di-
electric screening function and the exchange-correlation
function, respectively.

2.2. Structure factor

The computation of partial structure factors through
the formalism given by Ashcroft and Langreth [18] re-
quires the hard-sphere diameters σ1, σ2 of the first and
second components of the alloy and packing density η
which is related to σ1 and σ2 as

η =
π

6Ω

2∑

i=1

Ciσ
3
i . (2)

In the present work σ1 and σ2 have been evaluated by
using the relation as proposed by Ashcroft and Lan-
greth [19]:

Vip(σi) = Vmin +
3
2
kBT , (3)

where 3/2kBT is the mean kinetic energy and Vmin is the
depth of the first minimum in the interionic pair poten-
tial given by Harrison [15] as

Vip(R0) =
Z2

i e2

R0

[
1− 2

π

∫ α

0

Fni(q)
sin qR0

q
dq

]
,

i = 1, 2 . (4)

Here Fni(q) is the normalized energy–wave number char-
acteristic

Fni(q) = −
(

q2Ω
2πZ2

i e2

)
Fi(q) , (5)

where Fi(q) in the local approximation is [15]:

Fi(q) = −
(

Ωq2

8π

)[
|Wi(q)|2 ε∗(q)− 1

ε∗(q)
1

1−G(q)

]
. (6)

ε∗(q) is the modified Hartree dielectric function given by

ε∗(q) = 1 + [ε(q)− 1][1−G(q)] (7)

with ε(q) as the usual Hartree dielectric function. G(q)
takes into account the correlation among the conduction
electrons.

The three partial structure factors for a binary liquid
mixture can be expressed in terms of the Fourier trans-
form of direct correlation functions and are computed on
the lines of Ashcroft and Langreth [11] and Enderby and
North [12]:

S11(K) = [1− n2c22(q)]/Dd(q) , (8)

S22(K) = [1− n1c11(q)]/Dd(q) , (9)

S12(K) = (n1n2)1/2c12(q)/Dd(q) , (10)
with

Dd(q) = [1− n1c11(q)] [1− n2c22(q)]− n1n2c
2
12 . (11)

S11, S22 and S12 are called the Ashcroft–Langreth partial
structure factors.

2.3. Electrical resistivity

For the computation of the resistivity of liquid met-
als, Ziman gave a diffraction model formula (Ziman [20]),
which has been quite successful especially when applied
to simple metals. The derivation of the Ziman formula
relies on the use of the relaxation-time approximation for
the Boltzmann equation and the use of pseudopotential
for the interaction between an electron and an ion.

It was shown by Faber and Ziman [21] that the
diffraction-model formula for liquid metals proposed by
Ziman [20] could easily be extended for binary alloys.
For the sake of better representation, we express the re-
sistivity of binary alloys as consisting of three distinct
contributions, i.e.,

R = R11 + R22 + R12 , (12)

where the first two terms on the right hand side arise
due to the same particle correlation and the third term
(Rαβ) is due to the cross-term scattering. α and β rep-
resent the constituent species of the binary alloys. The
different contributions are given by

R11 =
(
3π/~|e|2) (

Ω/Nv2
F

)

× 4
∫ 1

0

c1 |w1(k, q)|2 S11(K)η3dη , (13)

R22 =
(
3π/~|e|2) (

Ω/Nv2
F

)
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× 4
∫ 1

0

c2 |w2(k, q)|2 S22(K)η3 dη , (14)

R12 =
(
3π/~|e|2) (

Ω/Nv2
F

)

× 4
∫ 1

0

2(c1c2)1/2 |w1(k, q)| |w2(k, q)|S12(K)η3 dη .

(15)
Here ~ is the well-known Planck constant and is given

by ~ = h
2π .

In a composite form R can be expressed as

R =
(
3π/~|e|2) (

Ω/Nv2
F

)

×
〈∑

α,β

(c1c2)1/2Sij(K)w1(k, q)w2(k, q)η3

〉
, (16)

where the expression in acute brackets, 〈. . .〉, stands pre-
cisely for the following integral:

〈. . .〉 = 4
[ ∫ 1

0

c1S11(K) |w1(k, q)|2

+ c2S22(K) |w2(k, q)|2

+ 2(c1c2)1/2S12(K) |w1(k, q)| |w2(k, q)|
]
η3dη .(17)

Here w1(k, q) and w2(k, q) are the form factors of
species 1 and 2; c1, c2 are the concentrations; S11(K),
S22(K) and S12(K) are the partial structure factors of
the alloy, and η = q/2kF.

2.4. Knight shift

The frequency of nuclear magnetic resonance (NMR)
associated with a metallic state is generally higher than
the corresponding frequency for the non-metallic state.
Such a shift of the NMR frequency is known as the
Knight shift. This arises due to the hyperfine contact-
-interaction between the nucleus and the surrounding
conduction electrons. The Knight shift (K%) is defined
as the ratio of the frequency shift to the frequency at
which the NMR is observed for the metallic state. The
hyperfine interaction between the conduction electrons
and the nuclear moment in a metal provide a vast array of
properties that can be studied through nuclear-magnetic
technique [22–24]. Although the experimental techniques
of the measurement of Knight shift have been developed
much earlier, its theoretical development had been in a
state of infancy and has been developed much later. The
previous theoretical work, [20, 25–30], on the magnetic
properties of metal substantiate the view that like the
electrical resistivity, the nearly-free-electron (NFE) ap-
proximation is also valid for the theoretical treatment of
various magnetic properties viz., the Knight shift, mag-
netic susceptibility, the Hall coefficient etc. We shall now
present its concise theory within the framework of pseu-
dopotential technique. According to Pake [31] the Knight
shift may be expressed as

K =
(

8π

3

)
χPPFΩ . (18)

Here χP is the spin paramagnetic susceptibility of a con-
duction electron per unit volume, Ω is the volume of the
crystal and PF — the average electron density at the site
of the nucleus from the conduction electrons with an en-
ergy EF. Assuming the form factor w(k, q) and structure
factor S(k) to be spherically symmetric we get

K1

K0
=

P 1
F

P 0
F

= − 3Z

4EFk2
F

×
∫ α

0

S(K)w(k, q)q ln
∣∣∣∣
q + 2kF

q − 2kF

∣∣∣∣ dq , (19)

where P 0
F and P 1

F are the zero-order and first-order terms,
K0 and K1 are zero-order and first-order terms, EF is the
Fermi energy, kF is the Fermi wave vector; and the other
symbols have their usual meaning. For alloys the inte-
grand of Eq. (19) is replaced by

IK =
∫ ∞

0

[
c1S11(K)w1(k, q) + c2S22(K)w2(k, q)

+ 2(c1c2)1/2w1(k, q)w2(k, q)S12(K)
]

× q ln
∣∣∣∣
q + 2kF

q − 2kF

∣∣∣∣ dq . (20)

Also Z, EF and kF are such “alloy quantities” X, evalu-
ated through Vegard’s rule i.e., X = c1X1 + c2X2, where
c1 and c2 are the concentrations of the constituents.

2.5. Fermi energy and density of states

The electronic structure of solids and liquids can be
precisely described through an accurate knowledge of
its electronic states. There are a number of theoreti-
cal methods of determining different aspects of the elec-
tronic structure of liquid metals among which the density
of states and the Fermi energy have significant bearing.
The calculations of the Fermi energy EF and the density
of states N(EF) for simple liquid metals have been re-
ported by [32–51] using various pseudopotentials and the
Green function theory. It does not appear that the Har-
rison first principle pseudopotential has been used for the
study of these properties except by Thakur [52] for alkali
metals. We, therefore, present our work on the Fermi en-
ergy and density of states of multivalent liquid metals on
the basis of the first-principle pseudopotential approach
of Harrison. In the framework of conventional pertur-
bation theory, the energy of liquid metal is expressed as
(Harrison [15]):

E(K) =
~2K2

2m
+ 〈k|w |k〉

+
2m

~2

∑
q

′S(K) |N 〈k + q|w |k〉|2
|k|2 − |(k + q)|2 . (21)

Here S(k) is the liquid structure factor and is non-zero for
a liquid, 〈k|w|k〉 are the matrix elements for the crystal
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potential (W ), |N〈k + q|w|k〉| are the unscreened form
factor, m is the electronic mass and ~ = h/2π, where h
is the Planck constant, as above.

At the melting point, the above expression reduces to
(Schneider and Stoll [35])

E(K) =
~2K2

2m

+
2m

~2

∑
q

′
(

S(K)w2(k, q)
|k|2 − |(k + q)|2 −

S(k)w2(k, q)
q2

)
.

(22)
Replacing

∑
by Ω0

8π3

∫
d3q and putting k = kF, we obtain

for the energy at the Fermi level,

E(kF) =
~2k2

F

2m
+ ∆(kF)−∆(0) , (23)

where

∆(kF) = − mΩ0

4π2~2k2
F

×
∫ ∞

0

qS(K)w2(k, q) ln
∣∣∣∣
2kF + q

2kF − q

∣∣∣∣ dq (24)

and

∆(0) = − mΩ0

4π2~2

∫ ∞

0

S(k)w2(k, q)dq . (25)

For the alloy the integrand of Eq. (24) is replaced by

IE =
∫ ∞

0

[
c1S11(k) |w1(k, q)|2 + c2S22(k) |w2(k, q)|2

+ 2(c1c2)1/2w1(k, q)w2(k, q)S12(k)
]

× q ln
∣∣∣∣
q + 2kF

q − 2kF

∣∣∣∣ dq (26)

and the integrand of Eq. (25) is replaced by

I ′E =
∫ ∞

0

[
c1S11(K) |w1(k, q)|2

+ c2S22(K) |w2(k, q)|2

+ 2(c1c2)1/2w1(k, q)w2(k, q)S12(K)
]
dq . (27)

Here Ω0 is the atomic volume related to the Fermi wave
vector kF and valence Z by the relation

Ω0 =
3π2Z

k3
F

. (28)

It has been assumed that S(k) and w(q) are isotropic.

The expression for the density of states of liquid metal
is given as

N(EF) =
k3
FΩ0

π2

[∣∣∣∣
∂E(k)

∂k

∣∣∣∣
k=kF

]−1

=
k2
FΩ0

π2

[
~2kF

m

+
mΩ0

4π2~2k2
F

∫ ∞

0

qS(K)w2(k, q) ln
∣∣∣∣
2kF + q

2kF − q

∣∣∣∣ dq

+
mΩ0

π2~2kF

∫ ∞

0

S(K)w2(k, q)q2dq

4k2
F − q2

]−1

. (29)

The first integrand of Eq. (29) is the same as IE and
the second integrand for alloy becomes

IN =
∫ ∞

0

[
c1S11(K) |w1(k, q)|2

+ c2S22(K) |w2(k, q)|2

+ 2(c1c2)1/2w1(k, q)w2(k, q)S12(K)
]

× q2

4k2
F − q2

dq . (30)

3. Results and discussion

3.1. Structure

The hard-sphere diameters σ1 and σ2, as a function
of composition, have been evaluated for the system ac-
cording to the relation (3). The partial structure fac-
tors have been computed using these hard-sphere diam-
eters through the expression given by Ashcroft and Lan-
greth [18].

The partial structure factors of this system have been
presented at 700 ◦C for equiatomic composition as shown
in Fig. 1. The desired nature of the structure factors has
been reproduced with a very small pre-peak in S11(k)
and S12(k) which is a characteristic of gallium. A slight
dip in S22(k) before the principal peak and that in S11(k)
after the principal peak also appears. The principal peak
heights of S11(k), S22(k) and S12(k) are 2.248, 2.145,
and 1.215, respectively.

Fig. 1. Partial structure factors of liquid Al–Ga (just
above the melting point) at equiatomic composition.

In case of Al–Ga, the computed structure factors do
not show the behaviour of random mixing without a sub-
peak or asymmetry of the first peak. The position of the
first principal peak of the partial structure factors and the
crossover point q0 of the form factor decides the range of
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η = q/2kF which is most contributing to the resistivity
integrands for the alloy.

3.2. Electrical resistivity

For the study of the electrical resistivity of the liq-
uid alloys we need the partial structure factors at the
melting temperature for different concentrations. Since
the experimental knowledge on partial structure factors
is limited to a few systems only at the equiatomic com-
position, we undertake a theoretical approach based on
the Percus–Yevik (PY) approximation on the lines of
Ashcroft and Langreth [11] and Enderby and North [12].

The form factors required for this computation were
computed from Eq. (1). But it was found that some form
factors, which reproduced good electrical resistivity with
the experimental structure factors in case of metals, did
not perform well in alloys. However, slight change in the
choice of input parameters e.g., β or exchange correlation
function improved the agreement in case of Al–Ga.

Fig. 2. Concentration dependence of the electrical re-
sistivity of Al–Ga.

Fig. 3. Form factor of aluminium. •— data from [54].

For Al–Ga, the form factor of the Al component
(Fig. 3) has been calculated by Hubbard–Sham (HS)
while for Ga component (Fig. 4) the Shaw (SH) form
of exchange has been used to obtain better agreement
with the experiment. The good agreement may be in-
dicative of the free-electron behaviour of these alloys.
The slight discrepancies wherever they occur may be at-
tributed to the failure of approximations involved in the

Fig. 4. Form factor of gallium. • — data from [54].

TABLE
Parameters to curves on figures.

Figure Curve εnl α β Exchange R Rexp

3 1 C VT 5/8 H–S 23.7 24.7
2 C VT 5/8 H–S 23.7 24.7
3 Appapillai & Williams [55]

4 1 HS VT 1.0 SH 26.3 25.8
2 HS VT 1.0 V–S 19.1
3 Appapillai & Williams [55]

theoretical framework or to the formation of chemical
complexes, which are quasi-stable in nature. For further
improvement the complex formation model proposed by
Bhatia and Thornton may be used. The experimental
data have been read from a graph of [53]. The electri-
cal resistivity of the alloy has been shown in Figs. 2–4
and Table. It can be inferred from the figures that the
system shows a positive temperature-coefficient of the re-
sistance. The study reveals that as Zm is larger than 2
(where Zm = cαZα + cβZβ), the system shows a positive
temperature-coefficient of resistance.

3.3. Physical properties

The computed form factors, which have been found
suitable for the electrical resistivities of the alloys under
investigation, have been further put to test through the
computation of the Knight shift (K%), its concentration
dependence, and the Fermi energy (EF) in eV along with
the electronic density of states for the alloys under in-
vestigation. It should be mentioned that the integrand
of the Knight shift involves within itself the form fac-
tor w(k, q) linearly. Hence the computed Knight shift
may be taken as a test for the accuracy of the form fac-
tor both in respect of magnitude and sign. Other physi-
cal quantities like electrical resistivity, the Fermi energy
and density of states have their integrands involving the
square of the form factor and thus they are only con-
cerned with the magnitude of the form factor. At the
equiatomic composition, the Knight shifts are in fairly
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good agreement with their ideal values obtained through
experimental data viz., for Al–Ga (K%)th. = 0.456 while
(K%)id = 0.306.

Our results show for Al–Ga the Knight shift (K%)th. =
0.456 whereas (K%)A = 0.164, (K%)B = 0.449 and
(K%)id = 0.306. The computed Fermi energy is
(EF)th. = 11.02 whereas (E0

F)A = 11.63, (E0
F)B = 10.35

and (E0
F)id = 10.99 eV. The computed electronic density

of states is N(EF)th. = 0.414 whereas N(E0
F)A = 0.387,

N(E0
F)B = 0.435 and N(E0

F)id = 0.411 eV−1. Here (id) is
the ideal value of the properties for the binary alloys. The
K0 of the constituent metals is that evaluated through
the zero-order OPW method (Faber [56]; Shimoji [57]).

Such calculations are very sensitive to the structure
factors and the pseudopotential form factor. Thus the
results are not always in quantitative agreement with ex-
periment (Shimoji [58]).

Also it should be mentioned that the integrand of elec-
trical resistivity involves the square of the form factors.
This is also true for the integrands of the Fermi en-
ergy and density of states. However the integrand of the
Knight shift involves the form factor linearly. Hence, the
sign of the form factor is quite material in the computa-
tion of the Knight shift. Thus a form factor reproducing
good electrical resistivity may not reproduce the Knight
shift so nicely.

In spite of the above mentioned facts and the inherent
approximations of the HFP technique, the Ziman for-
malism, the Knight formalism and the Fermi energy for-
malisms fairly reasonable agreement has been obtained
in the present work.

3.4. Electronic structure calculation

A different ab initio electronic structure calculation
of Al–Ga alloy has been performed using the FPLAPW
method within the generalized gradient approximation
(GGA) [58]. In our calculation, the crystal structure of
Al–Ga has the space-group symmetry Pm-3m with Al at
(0, 0, 0) and Ga at (0.5, 0.5, 0.5) in the unit cell. The radii
of the muffin-tin spheres were 1.5 a.u. and 2.0 a.u. for Al
and Ga, respectively. The total energy with respect to
the volume has been calculated and minimized as shown
in Fig. 5. Thus, whereas the previous calculation con-
sidered real liquid metal alloys just above the melting
point, the present calculation considers one single–single
50%–50% crystal corresponding to these liquids, or to
an associated amorphous solid. However, as we will see,
the present survey augments the above calculation in an
important way, because of certain statements concerning
the s- and p-levels (Al) and the d-level (Ga).

The Birch–Murnaghan relation for equation of state
(EOS) is used to get the static equilibrium volume V0 (=
270.06) as well as the bulk modulus B0 (= 27.05 GPa)
and its pressure derivative B′ (= 3.382) at zero pressure.
The pressure derivative of the bulk modulus at zero pres-
sure B′

0 is a parameter of great physical significance in
high pressure physics. It is related to a few other impor-
tant thermo-physical properties (like phase transitions,

Fig. 5. Total energy of Al–Ga as a function of cell vol-
ume.

interphase energy, adsorption energy etc.) [59].

Fig. 6. The electronic band structure of Al–Ga along
high symmetry directions.

The calculated band structure for Al–Ga in the high
symmetry direction in the Brillouin zone is shown in
Fig. 6. In this figure, we find a large dispersion of the
bands.

The angular-momentum projected densities of states
were obtained by using 2000-k points inside the irre-
ducible Brillouin zone for integration. The full geo-
metrical optimization gives an in-plane lattice constant
a = b = c = 3.24, and c/a = 1.0 of pure Al–Ga alloy.

Figure 7 shows the total DOS along with the partial
DOS of Al s, Al p and Ga d states of Al–Ga alloy. It is
observed that the main contribution in the valence band
comes from Al p state near the Fermi level. The hy-
bridization between Al s and Al p state gives rise to the
splitting of the peak into two subbands in the total den-
sity of states. A deep pseudogap (Ga d) appears near the
Fermi level and causes electrons near the Fermi level to
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Fig. 7. Total DOS and PDOS around Fermi energy of
Al–Ga alloys calculated for the optimized lattice con-
stant.

push into higher binding energies. Such a pseudogap cor-
responds to a well-known criterion of Nagel and Taue [60].

4. Conclusion

1. Harrison’s first principle technique in conjunction
with the hard-sphere technique of Ashcroft and
Langreth can be safely used for the study of trans-
port property (viz., electrical resistivity) of Al–Ga
alloys.

2. The partial structure factors play a key role in bi-
nary alloys due to the randomness of various scat-
tering centers A, B and AB where A and B are the
species.

3. The accuracy of resistivity values are sensitive to
the accuracy of the structure factor S(k) and form
factor 〈k + q|w|k〉. The resistivity in Al–Ga varies
almost linearly with concentration. The resistiv-
ity curve shows positive temperature-coefficient of
resistance.

4. The sharp peaks in liquid alloys result from the
formation of compounds or complexes. This is
certainly suggestive for describing energetically
favourable configuration of ions in liquid alloys.

5. A related electronic band structure calculation
of Al0.5-Ga0.5 has been performed using the
FPLAPW method. The equilibrium volume, bulk
modulus, and its pressure derivative have been es-
timated through energy minimization of the alloy.

6. The main contribution in the valence band comes
from Al p states. The Ga d states generate a pseu-
dogap.
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