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An efficient calculation algorithm is presented for two-center overlap integrals over noninteger n∗ Slater type
orbitals in molecular coordinate system based on the use of Guseinov’s one-center expansion formulae and Löwdin
α radial function. These integrals are expressed in terms of overlap integrals of integer n Slater type orbitals. The
analytical formulae offer the advantage of direct and efficient calculation of the two-center overlap integrals over
noninteger n∗ Slater type orbitals without the use of numerical methods. Several numerical results obtained are
presented to demonstrate the improvements in convergence rates.

PACS: 31 15.–p, 31 15.ae

1. Introduction

The two-center overlap integrals over integer n∗ Slater
type orbitals (ISTOs)and noninteger n∗ Slater type or-
bitals (NISTOs) have played a major role in evaluation
of multicenter multielectron integrals and in electronic
structure calculations of molecules. In literature, sev-
eral types of atomic orbitals have been proposed [1, 2].
The two more commonly used are the Slater type or-
bitals (STOs) and Gaussian type orbitals (GTOs). The
GTOs have two major disadvantages: (1) They do not
have a cusp on the nucleus. (2) They fall off too rapidly
for large r [3, 4]. The STOs and GTOs are not orthogo-
nal with respect to the principal quantum numbers that
creates some difficulties arising in the solution of differ-
ent atomic and molecular problems when the Hartree–
Fock–Roothaan (HFR) and explicitly correlated theories
are employed. Thus, the necessity for using the com-
plete orthonormal sets of Ψα-exponential type orbitals
(Ψα-ETOs, α = 1, 0,−1,−2, . . .) introduced by Guseinov
as basis functions arises [5]. The STOs and Guseinov’s
Ψα-ETOs are able to satisfy the cusp condition at the
nuclei [3] and decrease exponentially at the large dis-
tances [4]. In Refs. [6, 7], general analytical formulae
have been obtained to express the overlap integrals with
integer and noninteger n STOs in terms of the Guseinov
auxiliary function Qq

ns. Formulae for one-electron two-
-center molecular integrals over STOs have been intro-
duced in Refs. [8, 9] which are used in calculation of in-
teger principal quantum numbers.

In this study, we present a new analytical algorithm
for two-center overlap integrals over NISTOs on the basis
of Guseinov’s one-center expansion formulae and Löwdin
α radial function [5, 10]. It should be noted that the
accurate evaluation of the two-center overlap integrals

over NISTOs gives the well molecular structure informa-
tion needed to evaluate the HFR equation. A numer-
ical example is presented to demonstrate the efficiency
of the proposed algorithm for arbitrary values of integer
and noninteger principal quantum numbers and screen-
ing constants of ISTOs and NISTOs and internuclear dis-
tances.

2. Definitions and basic formulae

In order to evaluate the two-center overlap integrals
over NISTOs, we use Guseinov’s formula for the one-
-center expansion of NISTOs in terms of ISTOs defined
as [5, 11]

χn∗lm (ζ, r) = lim
N→∞

N∑

n′=l+1

V αN
n∗l,n′lχn′lm (ζ, r) , (1)

where α = 1, 0,−1,−2, . . . Here, the normalized NISTOs
χn∗lm(ζ, r) and ISTOs χn′lm(ζ, r) and expansion coeffi-
cients V αN are determined by

χn∗lm (ζ, r) = (2ζ)n∗+ 1
2 [Γ (2n∗ + 1)]−

1
2

× rn∗−1 e−ζrSlm (θ, ϕ) , (2)

χnlm (ζ, r) = (2ζ)n+ 1
2 [(2n)!]−

1
2

× rn−1 e−ζrSlm (θ, ϕ) , (3)

V αN
n∗l,n′l =

N∑

n′′=l+1

Ωαl
n′n′′(N)

(332)
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× Γ (n∗ + n′′ − α + 1)
[Γ (2n∗ + 1)Γ (2n′′ − 2α + 1)]1/2

, (4)

Ωαl
nκ(N) =

[
[2(k − α)]!

(2κ)!

] 1
2 N∑

n′=max(n,κ)

(2n′)αωαl
n′nωαl

n′κ,

(5)

ωαl
nn′ = (−1)n′−l−1

[
(n′ + l + 1)!

(2n)α(n′ + l + 1− α)!

×Fn′+l+1−α(n + l + 1− α)Fn′−l−1(n− l − 1)

×Fn′−l−1(2n′)
]1/2

. (6)

The Slm(θ, ϕ) occurring in Eqs. (2) and (3) are the com-
plex (Slm ≡ Ylm) or real spherical harmonics. We notice
that the definition of phases in this work for the com-
plex spherical harmonics (Y ∗

lm = Yl−m) differs from the
Condon–Shortley phases [12] by the sign factor (−1)m.

3. Evaluation of overlap integrals over NISTOs

The two-center overlap integrals over NISTOs in
molecular coordinate system are defined by

Sn∗lm,n′∗l′m′ (ζ, ζ ′; R)

=
∫

χ∗n∗lm (ζ, ra)χn′∗l′m′ (ζ ′, rb) dV . (7)

Using Eq. (1) we obtain for the two-center overlap in-
tegrals over NISTOs the following relations through the
two-center overlap integrals with ISTOs [7]:

Sn∗lm,n′∗l′m′(ζ, ζ ′; R)

= lim
N,N ′→∞

N∑

n′′=l+1

N ′∑

n′′′=l′+1

V αN
n∗l,n′′lV

αN ′
n′∗l′,n′′′l′

× Sn′′lm,n′′′l′m′ (ζ, ζ ′, R) , (8)

where R = Rab and
Snlm,n′l′m′ (ζ, ζ ′; R)

=
∫

χ∗nlm (ζ, ra) χn′l′m′ (ζ ′, rb) dV . (9)

The analytical relations for two-center overlap integrals
over ISTOs have been presented in Refs. [13, 14].

In order to evaluate the two-center overlap integrals
over ISTOs in molecular coordinate system, we use the
following formula [13]:

Snlm,n′l′m′(ζ, ζ ′; R)

=
min(l,l′)∑

λ=0

T ∗λlm,l′m′(θ, ϕ)Snlλ,n′l′λ(ζ, ζ ′;R) , (10)

where Tλ
lm,l′m′(θ, ϕ) and Snlλ,n′l′λ(ζ, ζ ′;R) are the Gu-

seinov rotational angular coefficients and overlap inte-
grals over ISTOs in lined-up coordinate systems, re-
spectively (see Refs. [15, 16]). For the calculation of
Snlλ,n′l′λ(ζ, ζ ′; R) we use the Löwdin α radial func-
tion [10] in the following form [17–22]:

Snlλ,n′l′λ(ζ, ζ ′; R) = Nnl,n′l′λ(−1)l′+λ

(
ζ

ζ ′

)n+1/2

×
n′+l′+l∑

i=0

n′+l∑

j=0

(n− l + j)!Cn′l′λ
l (i, j)

× (ζ ′R)n−2l−l′+i+j (11)

[
e−ζ′R

(
(−1)j

(R (ζ − ζ ′))n−l+j+1
− 1

(R (ζ + ζ ′))n−l+j+1

)

+ e−ζR

n−l+j∑

k=0

1
(n− l + j − k)!

(
(−1)i

(R (ζ + ζ ′))k+1

− (−1)j

(R (ζ − ζ ′))k+1

)]
,

where
Nnl,n′l′λ = (−1)λ2n′+n

×
(

(2l + 1) (2l′ + 1) (l′ + λ)!(l − λ)!
(2n)! (2n′)!(l + λ)! (l′ − λ)!

)1/2

. (12)

Here the coefficients Cnlλ
l′ (i, j) can be calculated by us-

ing Sharma’s analytical formulae [23–27]. For the quick
calculations, in our earlier study, the Sharma analytical
formula has been expressed in terms of binomial coeffi-
cients. Thus, the Sharma analytical formula for the coef-
ficients Cnlm

l′ (i, j) occurring in Löwdin α radial function
becomes [28]:

Cnlλ
l′ (i, j) =





(n + l + 2l′ − i− j)!
∑min{i/2,l+l′}

µ=0

∑min{j/2,l+l′−µ}
ν=0 Fj−2ν(n + l + 2l′ − 2ν − i)

× Fi−2µ(n + l + 2l′ − 2µ− 2ν)Bll′λ
µν for i + j ≤ n + l − λ + 2l′,

0 for i + j > n + l − λ + 2l′,

(13)
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TABLE I
The comparative values of two-center overlap integrals with ISTOs and NISTOs obtained from Eq. (8) for α = −1, α = −3 and
N = N ′ = 20.

n l m ζ n′ l′ m′ ζ′ p θ ϕ
α = −1 for

Eq. (9) in [11]
α = −1

for Eq. (8)
α = −3

for Eq. (8)
2.3 0 0 7.5 2.8 0 0 2.5 6 0 0 0.254682 0.254677 0.254594
2.9 1 0 6 2.6 1 1 4 8 30 45 0.089117 0.089117 0.089117
3.1 2 2 15 3.5 2 2 10 2.5 120 135 0.300441 0.300441 0.300441
3 2 2 15 3 2 2 10 2.5 120 135 0.255396 0.255396 0.255396
4.5 3 2 25 3 2 2 17 4.2 150 180 –0.257333 –0.257333 –0.257333
4 3 1 50 4.7 2 1 40 1.4 150 180 –0.21316 –0.21316 –0.21316
4.6 3 3 26 4.3 3 3 24 5.1 180 225 0.345451 0.345451 0.345451

TABLE II
The values of overlap integrals with ISTOs and NISTOs obtained from Eq. (8) for α = −3, α = −4 and N = N ′ = 30.

n l m ζ n′ l′ m′ ζ′ R θ ϕ
α = −3

for Eq. (8)
α = −4

for Eq. (8)
2.1 1 0 0.7 2.3 0 0 0.3 0.2 50 120 0.00020027 0.00019882
3.2 2 0 1.3 3.6 2 1 0.7 2.5 20 36 0.016633 0.016633
4.3 3 2 2.2 4.1 2 2 1.2 3.2 60 30 –0.034904 –0.034904
5.1 4 2 1.5 4.8 3 2 0.5 2 120 60 –0.027229 –0.027229
5.6 3 3 1.5 5.3 4 3 0.5 2 45 120 –0.091578 –0.091578
6 4 4 23 5 4 4 27 0.5 150 60 –0.0062132 –0.0062132
6.5 5 3 46 5.7 4 3 42 0.16 125 180 0.090123 0.090123
7.2 6 5 46 6.1 4 4 42 0.16 135 150 –0.021633 –0.021633

where

Bll′λ
µν = Fµ(µ + ν − l′ − 1/2)(ν − l′ − 1/2)!

× (l′ − ν − 1/2)!
l−λ∑
s=0

Fs(l − λ)Fl+λ−s(l′ + λ)

×Fl+l′−µ−ν(l′ − µ + s− 1/2)Fν(s− l + ν − 1/2).

(14)
The quantity Fn(m) = n!

m!(n−m)! in Eqs. (6), (13) and
(14) are the binomial coefficients.

4. Numerical results and discussion

An efficient calculation algorithm is presented for the
two-center overlap integrals over NISTOs in molecular
coordinate system by using Guseinov’s one-center ex-
pansion formulae and Löwdin α radial function. The
proposed algorithm is implemented numerically using a
computer program, and its convergence properties are
investigated. We performed a program for the calcu-
lation of two-center overlap integrals over NISTOs and
ISTOs in molecular coordinate system. All calculations
were performed on Mathematica 7.0 international math-
ematical software. The computational results and liter-

ature [11] data of the two-center overlap integrals over
NISTOs and ISTOs in molecular coordinate system are
shown in Tables I and II for α = −1, α = −3 and α = −4.
As can be seen from the tables, the computation accuracy
of computer results is satisfactory.

Fig. 1. The convergence of series in Eq. (8) for α = −1
with different values of parameter R for two-center over-
lap integral S3.7,2,2,3.3,2,2 in atomic units (a.u.) as a
function of the indices N = N ′(ζ = 5.5, ζ′ = 2.2, θ =
30◦, ϕ = 300◦).
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Fig. 2. The convergence of series in Eq. (8) for α = −3
with different values of parameter R for two-center over-
lap integral S3.7,2,2,3.3,2,2 in a.u. as a function of the
indices N = N ′(ζ = 5.5, ζ′ = 2.2, θ = 30◦, ϕ = 300◦).

In Figs. 1 and 2 we present the convergence of the series
in Eq. (8) for N = N ′ = 30. Here N and N ′ are the upper
limits of the n′′ and n′′′, respectively. The series accu-
racy ∆fα = fα

N −fα
L is shown in Figs. 1 and 2, where the

quantities fα
L are the values of integral for L < N = N ′.

As can be seen from Figs. 1 and 2, the convergence for
given α is satisfactory for arbitrary values of internu-
clear distances R. Greater accuracy is attainable by the
use of more terms of expansions (8). The convolution
between Guseinov’s one-center expansion formulae and
Löwdin α radial function to accurate calculations of the
two-center overlap integrals with NISTOs in molecular
coordinate system is reported for the first time in the lit-
erature. Extensive numerical tests and comparisons with
some already existing methods show that the algorithm
proposed here is efficient.
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