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The static fluctuation approximation is applied for the first time to an electronic system. A simple model
(a uniform electron fluid) is chosen to explore the applicability of static fluctuation approximation to electrons
in metals. The thermodynamic properties — the internal energy per particle, the pressure, the entropy per unit
volume, the heat capacity per unit volume, and the chemical potential — are calculated over a wide range of
densities within the metallic-density region. Finally, the pair-correlation function for the electron fluid is evaluated.
Values of this function are then tabulated for zero-interparticle separation at several densities of interest. The
results of this work are found to be in good agreement with several other many-body calculations.
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1. Introduction

The hypothetical uniform electron fluid consists of a
large number N of electrons embedded in a uniform back-
ground of positive charge chosen to ensure overall charge
neutrality. Since we are interested only in bulk proper-
ties, the system is studied in the thermodynamic limit:
N → ∞ and Ω → ∞, in such a way that the number
density n ≡ N/Ω remains constant (Ω being the [nor-
malization] volume). This implies that surface effects are
neglected [1]. The validity of the thermodynamic limit
in such a system has been rigorously proven [2]. As a
model for the conduction electrons in a solid, where the
lattice of the positive ions is replaced with an equivalent
uniform medium, this leads to enormous simplifications.
In particular, the ionic charge density fluctuations and,
therefore, the interactions of the electrons with the lattice
vibrations are ignored.

In the absence of spin polarization, the model is fully
specified by two dimensionless parameters: the den-
sity parameter (the Wigner–Seitz radius) rs = a/a0,
which is defined as the average separation a between
electrons measured in units of the effective Bohr radius
a0 ≡ ~2/me2, and the coupling-parameter Γ = Ec/Ep,
which is the relative strength between the Coulomb and
kinetic energies, Ec and Ep, respectively. Depending on
the parameter Γ , the electron fluid may exhibit three
different regimes in terms of rs: the weak (rs ≤ 1), in-
termediate (1 ≤ rs ≤ 10), and strong (rs ≥ 10) Coulomb
coupling regimes [3]. The distinction between low and
high densities is often quantified by the parameter rs
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which is related to the electron density by 4π(a0rs)3/3 =
Ω/N ≡ n−1. At small rs (high density), the electrons
form a weakly-coupled Fermi liquid, while at large rs

(low density) they are expected, as Wigner first pre-
dicted, to undergo a freezing transition forming a crys-
talline phase known as the Wigner crystal: the electrons
arrange themselves in the configuration of lowest poten-
tial energy, which is always greater than (or equal to)
the exact energy [4]. The bcc lattice was shown to be the
optimal configuration, in agreement with classical argu-
ments by Wigner [5].

The lack of a comprehensive microscopic theory for the
electronic system has motivated us to revisit it. This is
the first time the static fluctuation approximation (SFA)
is applied to an electronic system. A simple model (a uni-
form electron fluid) is chosen to explore the validity of
SFA in such systems. The model is used as a reference
system in most realistic calculations of electronic struc-
ture in condensed matter.

In real solids, the compensating background of positive
charge is neither a rigid nor a uniform charge distribu-
tion; rather, it is discrete and deformable. Specifically,
the lattice ions form positive charge concentrations local-
ized at the lattice sites; these perform small oscillations
about their equilibrium positions, generating phonons.
Naturally this influences the electron distribution. By
virtue of their interaction potential with the conduction
electrons, the ions induce a polarization of the electron
cloud which in turn affects the ionic motion [6–9]. It is
well known that macroscopic systems exhibit collective
behavior. Of particular interest here are: (a) electronic
oscillations, which are known as plasmons; and (b) mo-
tion of the ions, which is harmonic (phonons); but these
phonons have relatively high energy and do not con-
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tribute much to the low-temperature properties of the
system. Because the ion cores (formed by nuclei and the
inner electrons) are much more massive than the elec-
trons, their characteristic velocity is much lower. The
electrons generally react so quickly that the ion cores can
be considered stationary and the electron density has its
equilibrium value at all times. Also, the collective de-
scription of the system should incorporate the electron–
electron interaction caused by the virtual exchange of
phonons and the effects of the periodic potential of the
crystal ions which have important consequences for the
dynamics of the electrons.

Screening is one of the most important manifestations
of many-body effects in metals, semiconductors and plas-
mas. It simply means that the interaction between two
particles is modified by the surrounding particles. The
motion of an electron in a system depends on that of all
other electrons in the system. The electronic interaction
causes a Coulomb hole, form around each electron. Elec-
tron and hole behave as a single object, namely, a quasi-
particle. These quasiparticles interact with each other
through a weak screened Coulomb potential. The sim-
plest example of this kind, based on the Thomas–Fermi
approximation, is the response of the system to the pres-
ence of an impurity atom in a metal, which involves the
rearrangement of its charge distribution. In this case,
the static screened Coulomb interaction has formally the
spatial dependence of the Yukawa potential [1, 10].

A great variety of techniques have been developed
for tackling the electron fluid, although each of these is
known to be plagued by a number of shortcomings. Two
fundamentally different types of approach have been con-
sidered. The first category looks into the behavior of
the system in momentum space and the calculations are
carried out self-consistently, such as the random phase
approximation (RPA) [11] and the theory of Singwi and
co-workers (STLS) [12]. The second category studies nu-
merically the system in direct space, and is based on the
analysis of a subsystem containing a small number of par-
ticles, such as the variational and diffusion Monte Carlo
methods [3, 13, 14], the variational Fermi-hypernetted-
-chain technique [15, 16], the coupled-cluster expansion
[17, 18], and numerical many-body perturbation expan-
sion [19]. All these techniques have their strengths as
well as limitations. Some of them rely heavily on exten-
sive computations; but none technique is likely to pro-
vide the answers to all the questions we have about this
system.

The aim of the present work is to calculate the thermo-
dynamic properties as well as the pair-correlation func-
tion of the electron fluid using the so-called SFA [20, 21]
with the static screened Coulomb potential. The main
advantage of this non-Green-function method is its rela-
tive simplicity. In particular, the temperature enters as
in ordinary quantum statistical mechanics.

In a series of papers, SFA was developed for calcu-
lating the properties of, among other systems, liquid
4He [21], liquid 3He [22], and spin-polarized atomic hy-

drogen [23]. More recently, SFA was also applied success-
fully to hot nuclear matter [24]. The results of these cal-
culations were in qualitative and quantitative agreement
with other many-body methods. The theory contains
no adjustable parameters and the only approximation
is that the square of the local-field operator is replaced
with its mean value. The physical implication is that the
true quantum-mechanical spectrum of this operator is re-
placed with a distribution around its expectation value.

The outline of this paper is as follows: In Sect. 2
we present our SFA formalism and theoretical frame-
work. The thermodynamic properties as well as the pair-
-correlation for the electron fluid are given in Sect. 3. Fi-
nally, in Sect. 4, we present the results and make some
concluding remarks.

2. Theoretical framework

2.1. The many-body Hamiltonian

The system of N degenerate interacting electrons mov-
ing in a uniform background of neutralizing positive
charge is described by the Hamiltonian [1]:

Ĥ = Ĥel + Ĥb + Ĥel–b , (1)

where Ĥel, Ĥb and Ĥel–b are the electron–electron,
background–background (positive ions) and electron–
background Hamiltonians, respectively.

Since the background is rigid and uniform, the ionic
parts of Ĥ can readily be simplified as [1]:

Ĥb + Ĥel–b = −e2N2

2Ω

(
4π

q2
TF

)
, (2)

qTF = (4qF/πa0)1/2. (3)

Here qTF is the Thomas–Fermi wave number and qF ≡
(3π2n)1/3 is the Fermi wave number; q−1

TF is a measure of
the screening length.

The dynamic part of the total Hamiltonian can be writ-
ten as

Ĥel =
∫

d3rΨ̂+(r)
(
−~

2∇2

2m

)
Ψ̂(r)

+
1
2

∫ ∫
d3r1d3r2

× Ψ̂+(r1)Ψ̂+(r2)V (r)Ψ̂(r1)Ψ̂(r2) , (4)

where the first term is the kinetic energy of the electrons
and the second term represents the mutual interaction
between a pair of electrons described by the two coor-
dinates r1 and r2. The operators Ψ̂+(r) and Ψ̂(r) are,
respectively, the creation and annihilation field operators
that satisfy the fermion anti-commutation relations.

The static screened Coulomb potential has formally
the spatial-dependence of the Yukawa potential [1, 10]:

V (r) = (e2/r)e−qTFr. (5)

Thus, the simple spin-independent Coulomb law be-
tween two electrons V (r) = e2/r, is “shielded” with the
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Thomas–Fermi (TF) screening length q−1
TF. In a uniform

electron fluid, all physical properties must be invariant
under spatial translations and rotations. This implies
that V (r) depends only on the relative interparticle sep-
aration |r1 − r2|, and the single-particle wavefunction is
a plane wave

ψkσ(r) =
1√
Ω

e− ik·rησ , (6)

where k represents the wavevector, and ησ can be either
the spin-up or spin-down wavefunction.

Since the TF approach relies on a purely static de-
scription, all dynamic effects are washed out from the
start; in particular, those responsible for the algebraic
tails [25, 26]. This is just a first step in applying SFA
to the electron fluid. A more realistic interaction will be
used in future works.

In the notation of second quantization, Ĥ can be writ-
ten as

Ĥ =
∑

kσ

~2k2

2m
â+

kσakσ

+
1

2Ω

∑

σλ

∑

kp,q 6=0

V (q)â+
k+q,σâ+

p−q,λapλakσ , (7)

V (q) being the Fourier transform of the pair potential
defined by

V (q) =
∫

d3rV (r) exp(− iq · r) = 4πe2/
(
q2 + q2

TF

)
.

(8)
The exclusion of q = 0 in the Hamiltonian serves to sub-
tract the positive background.

2.2. SFA formalism
2.2.1. Basic equations

The formalism on which our computational procedure
is based (SFA) has been fully described in the literature
[21, 22]. For convenience, a summary is given here to in-
troduce the notation as well as some equations necessary
for studying the system.

In the Heisenberg picture, the time evolution of any
operator â+

k is given by

â+
k (τ) = exp(τĤ)â+

k (0) exp(−τĤ) , (9)

where τ ≡ it, t being the time

dâ+
kσ(τ)
dτ

=
[
Ĥ, â+

kσ(τ)
]
. (10)

In SFA, we assume that the total Hamiltonian is given as
a linear combination of the local-field operator Êkσ and
the number-of-particles operator n̂kσ = â+

kσâkσ [21]:

Ĥ =
∑

kσ

Êkσâ+
kσâkσ, (11)

the indices k and σ corresponding to given wavevectors
and spin projections, respectively.

For fermions, the operator algebra for the creation and
annihilation operators is defined by the following three
anti-commutation relations:

{
âkσ, â+

qλ

}
= δkqδσλ ;

{
â+

kσ, â+
qλ

}
= 0 ,

{
âkσ, âqλ

}
= 0 . (12)

Assuming that the local-field operator Êkσ is Hermi-
tian and that it commutes with creation and annihilation
operators, one obtains from Eq. (10):

dâ+
kσ(τ)
dτ

=
[
Ĥ, â+

kσ(τ)
]

= Êkσ(τ)â+
kσ(τ) . (13)

In SFA, we assume that the square of the quadratic
fluctuation operator is replaced with its mean value

(∆Êk)2 ∼=
〈
(∆Êk)2

〉
, (14)

where ∆Êk ≡ Êk − 〈Êk〉 is the corresponding fluctua-
tion of the mean-field operator from its mean value. It
follows that the local-field fluctuation operator has two
symmetric eigenvalues:

(∆Êk)2 ∼=
〈
(∆Êk)2

〉
= ϕ2

k . (15)

This is the single key assumption in this approximation.
The implication is that not only the mean value of the
spectrum is taken into account, but also the fluctuations
of the spectrum around the mean value of the local-field
operator [21].

Following a procedure closely related to that used for
liquid 3He [22], we obtain the final form of the long-range
equation〈

n̂kÂ
〉

= η0(k)
〈
Â

〉
+ η1(k)

〈
∆ÊkÂ

〉
, (16)

where Â is an arbitrary operator that commutes with
creation and annihilation operators. The functions η0(k)
and η1(k) are given by

η0(k) ≡ 1
2

[
1

1 + exp
(
β

(〈
Êk

〉
+ ϕk

))

+
1

1 + exp
(
β

(〈
Êk

〉
− ϕk

))
]
,

η1(k) ≡ 1
2ϕk

[
1

1 + exp
(
β

(〈
Êk

〉
+ ϕk

))

− 1

1 + exp
(
β

(〈
Êk

〉
− ϕk

))
]
. (17)

β ≡ (kBT )−1 is the inverse thermodynamic temperature,
kB being Boltzmann’s constant, and T the absolute tem-
perature.

2.2.2. Local field operator
In treating the electron fluid at finite temperatures, it

is convenient to use the grand canonical ensemble, which
allows for the possibility of a variable number of parti-
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cles. The grand canonical Hamiltonian may be written
in second quantization as

Ĥ =
∑

kσ

(
~2k2

2m
− µ

)
â+

kσakσ

+
1

2Ω

∑

σλ

∑

kp,q 6=0

V (q)â+
k+q,σâ+

p−q,λapλakσ , (18)

µ being the chemical potential, defined as the energy re-
quired to remove (add) a particle from (to) the system
at constant volume.

Using (12) and (18) for the local-field operator Êk, we
find that

Êkσ =
{

âkσ,
[
Ĥ, â+

k

]}
, (19)

[
Ĥ, â+

kσ

]
= εkσâ+

kσ +
1

2Ω

∑

kp, q 6= 0

σλ

V (q)

×
(
â+

k+qσâ+
p−qλâpλ − â+

k+qσâ+
k−qσâkσ

)
. (20)

The local-field operator Êk is then given as

Êkσ =
{

âkσ,
[
Ĥ, â+

kσ

]}

= εkσ(k)− 1
Ω

∑

p 6=k

V (|p− k|) n̂pλ . (21)

Equation (21) makes clear that the local-field opera-
tor Êk is spin-independent, which allows us to omit the
spin indices. This reflects the fact that the interaction
potential V (|r1 − r2|) is spin-independent; so is the par-
ticle distribution operator.

The corresponding mean value of the local-field oper-
ator is〈

Êk

〉
= εk(k)− 1

Ω

∑

p 6=k

V (|p− k|) 〈n̂p〉 , (22)

where
V (|p− k|) = 4πe2/

(
q2
TF + |p− k|2 )

. (23)

2.2.3. Closed system of nonlinear integral equations
Taking into account the symmetric property of the uni-

form electron fluid, 〈∆Êk〉 = 0, and assuming that in
Eq. (17) Â = 1, one gets

〈n̂k〉 = η0(k) . (24)

In the equilibrium state, the electrons prefer energet-
ically to stay in the lowest-momentum state; so if the
fluctuations in the local-field operator lead to an increase
in the state energy, then the fluctuations in the number
of particles lead to a decrease in the number of particles
in this state. This implies that the fluctuations in the
number-of-particles operator are given by

n̂k ≡ 〈n̂k〉 −∆n̂k . (25)

Rewriting the long-range equation in terms of the fluc-

tuations of the occupation-number operator, we have
〈
∆n̂kÂ

〉
= −η1(k)

〈
∆ÊkÂ

〉
. (26)

It is possible to obtain a closed set of nonlinear integral
equations for the pair-correlation function 〈∆n̂k∆n̂q〉c,
the index c denoting the true correlations for k 6= q:
substituting Â by ∆n̂q in (26), we get

〈∆n̂k∆n̂q〉c = −η1(k)
〈
∆Êk∆n̂q

〉
c

=
η1(k)

Ω

∑

p 6=k

V (|p− k|) 〈∆n̂p∆n̂q〉 . (27)

The correlation function 〈∆n̂p∆n̂q〉 can then be written
as

〈∆n̂p∆n̂q〉 =
〈
(∆n̂q)2

〉
δpq + 〈∆n̂p∆n̂q〉c , (28)

〈
(∆n̂q)2

〉 ≡ 〈
n̂2

q

〉− 〈n̂q〉2 . (29)

For Fermi systems, the Pauli exclusion principle implies
that n̂2

q = n̂q; so that (29) becomes
〈
(∆n̂q)2

〉
= 〈n̂q〉 (1− 〈n̂q〉) . (30)

Putting Â = ∆Êk in (26), we have

η1(k)ϕ2
k =

1
Ω

∑

p 6=k

V (|p− k|) 〈∆n̂p∆n̂k〉 . (31)

The set of nonlinear integral Eqs. (16), (22), (27),
(29) and (31) can be solved numerically by an iteration
method using Gaussian quadrature for the static screened
Coulomb potential.

3. Calculations

In the thermodynamic limit, and going over from the
summation over momentum p to integration, we obtain
from (22), (27) and (31)

〈
Êk

〉
= ε(k)−

∫ ∞

0

dpp2
p6=kf(k, p) 〈n̂p〉 , (32)

〈∆n̂k∆n̂q〉c = η1(k)
∫ ∞

0

dpp2
p6=kf(k, p) 〈∆n̂p∆n̂q〉 ,

(33)

η1(k)ϕ2
k =

∫ ∞

0

dpp2
p 6=kf(k, p) 〈∆n̂p∆n̂k〉 , (34)

f(k, p) ≡ 1
(2π)3

∫
V (|p− k|)dΘ , (35)

where the integral of V (|p−k|) is over the solid angle Θ .
The mean value of the local-energy operator is given

in its final form as
〈
Êk

〉
= ε(k)−

∫ ∞

0

dpp2

(
e2

2πkp

)

× ln
[
q2
TF + (p + k)2

q2
TF + (p− k)2

]
〈n̂p〉 . (36)
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Here and throughout, we have used the natural system
of units in which ~ = 1, m = 1. Thus, the energy is given
in Å−2.

This set of nonlinear integral equations can be used
straightforwardly to obtain the physical characteristics
of the system; in particular, the thermodynamics and
pair-correlation function.

3.1. Thermodynamic properties

The knowledge of the grand partition function Q al-
lows us to determine all thermodynamic properties

ln Q =
∑
pσ

q0(p) , (37)

where

q0(p) ≡ 1
2

[
ln

(
1 + exp

(
−β

(〈
Êp

〉
+ ϕp

)))

+ ln
(
1 + exp

(
−β

(〈
Êp

〉
− ϕp

)))]
. (38)

The grand mean energy can be expressed in terms of Q
as

Ug =
〈
Ĥ

〉
= −

(
∂ ln(Q)

∂β

)

=
∑

p

[〈
Êp

〉
〈n̂p〉+ η1(p)ϕ2

p

]
. (39)

The pressure is

P = kBT
ln Q

Ω
. (40)

The entropy can be calculated in terms of the grand mean
energy Ug = U − µN and P :

S =
1
T

(Ug + PΩ) . (41)

Finally, the heat capacity of the system at constant vol-
ume is

Cv =
(

∂Ug

∂T

)

Ω

. (42)

3.2. Pair-correlation function

The pair-correlation function gσ1σ2(r1, r2) is related to
the probability of finding an electron of spin σ1 at r1 and
a second electron of spin σ2 at r2. Since it is a probability,
it must be positive everywhere: g(r) ≥ 0 [27–31]. The
Pauli exclusion principle implies that gσσ(0) = 0. Physi-
cally, nσ2(r2)gσ1σ2(r1, r2)d3r2 is the expected number
of electrons in the volume element d3r2 at r2, given
that there is an electron at position r1. In the unpo-
larized electron fluid, the electronic spin density n↑(r) =
n↓(r) = n(r)/2 is uniform in space; so that gσ1σ2(r1, r2)
depends only on the relative coordinates r = |r1 − r2|
between the two electrons.

For noninteracting electrons, the pair correlation
function is given in the Hartree–Fock approximation
[10, 27, 32] by

gσ1σ2(r) = 1− 9
(

j1(kFr)
kFr

)2

δσ1σ2, (43)

j1(r) being the spherical Bessel function.
The more general form of the pair correlation function

for interacting electrons is expressed as [31, 33, 34]

nσ1(r1)nσ2(r2)gσ1σ2(r1, r2)

= 〈Φ| ψ̂+
σ1(r1)ψ̂+

σ2(r2)ψ̂σ2(r2)ψ̂σ1(r1) |Φ〉 , (44)

where nσ(r) is the electron density operator for the
spin projection σ =↑ or ↓, and the expectation value is
taken over Φ, the ground state of the system. This def-
inition ensures the symmetry property gσ1σ2(r1, r2) =
gσ2σ1(r2, r1), and the asymptotic value gσ1σ2(r →∞) =
1, denoting no correlations between two electrons in this
limit.

In second quantization,

gσ1σ2(r1, r2) =
1

4n2Ω2

∑

k,p

[
〈n̂k,σ1n̂p,σ2〉

− 〈n̂k,σ1n̂p,σ1〉 e− i (k−p)·r
]
. (45)

Changing the summation over k and p to integrals, one
can express the spin parallel and spin anti-parallel pair-
-correlation functions within SFA theory as

g↑↑(r) =
1

π4n2

∫ ∞

0

dkk2

∫ ∞

0

dpp2 (1− j0(kr)j0(pr))

×
[
〈∆n̂k↑∆n̂p↑〉k 6=p + 〈n̂k↑〉 〈n̂p↑〉

]
, (46)

and

g↑↓(r) =
1

π4n2

∫ ∞

0

dkk2

∫ ∞

0

dpp2
[
〈∆n̂k↑∆n̂p↓〉

+ 〈n̂k↑〉 〈n̂p↓〉
]
. (47)

4. Results and discussion

In this section we summarize the results obtained
within the SFA framework for the thermodynamic prop-
erties as well as for the pair-correlation function of the
electron fluid, in which the density parameter rs is less
than the melting point of the Wigner crystal. The present
approach is free of any input and/or fitting parameters.

Let us first explore the screening effect on the mean en-
ergy per particle (ε ≡ U/N) by choosing different values
for the screening parameter ratio: κ = 0.0qTF (the bare
interaction); κ = 0.3qTF; κ = 0.5qTF; and κ = 1.0qTF

(the full interaction); i.e., κ ranges from 0 for a non-
-screened potential to qTF for a fully-screened potential.

Figure 1 displays schematically our ε results for vari-
ous κ in terms of rs at fixed temperature, T = 1000 K.
ε has a “standard” shape consisting of a repulsive bar-
rier at short range followed by an attractive well, as
indicated by Eq. (22). For all κ-values, the screened
Coulomb energy is somewhat higher than that for the
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corresponding bare Coulomb energy. Furthermore, the
energies converge rapidly to a limiting value when rs in-
creases. The minimum of the bare Coulomb potential
occurs at rs = 2.6 with εmin = −0.576 Å−2 (−4.389 eV);
while the minimum of the full-screened potential occurs
at rs = 4.0, which is identical to that of Ref. [35], with
εmin = −0.119 Å−2 (−0.909 eV). This means that the
location of the energy minimum depends on rs (i.e., den-
sity). It is interesting to observe that the present values
compare favorably to the experimental values for metallic
sodium, in which rs = 3.96 and εmin = −1.13 eV [1]. The
negative values of the ε minima indicate that the sys-
tem is bound. These minima shift upwards and slightly
towards higher rs values as κ increases.

Fig. 1. The energy per particle, ε, for different val-
ues of the screening parameter ratio κ, as a function of
the dimensionless parameter rs. The solid curve is for
the bare Coulomb interaction; the dashed-dotted and
dotted curves are for partial screening; and the dashed
curve is for full screening.

At lower κ, ε deepens, which means that the screen-
ing effect reduces the interparticle potential, as expected
physically.

The kinetic energy dominates in the high-density re-
gion, where the system behaves, therefore, like an ideal
electron gas. It is well known that for a fermion system
at high density ε goes as r−2

s at temperatures below the
Fermi temperature TF [1]. Thus, in this density region,
both the screened and the bare Coulomb interactions do
not have a major effect on ε. The electron fluid has the
peculiar property of becoming more and more ideal as its
density rises.

In Fig. 2, ε is shown as a function of rs for the elec-
tron fluid. The results of this work, with the full static
screened potential (κ = qTF), will now be compared to
those of other various theories, which include certain ap-
proximations. Clearly, our results are in excellent agree-
ment with more complicated many-body theories. In
fact, there is no noticeable difference between the present
calculations and those of Ref. [36] over the whole range of
rs as well as those of Refs. [37, 38] within rs ≤ 5, which
correspond to typical metallic densities. This is to be
expected, since the results of Refs. [36–38] are calculated

at high density. For rs ≥ 5, we get a similar density-
-dependence behavior to that of Refs. [4, 13, 14], where
the variational Monte Carlo and fixed-node diffusion
Monte Carlo techniques were used, and of Ref. [15], where
the Fermi hypernetted-chain theory was used. Further,
our energy results for full screening are virtually identical
to the corresponding empirical results of Refs. [35–39] in
the high-density region.

Fig. 2. The energy per particle, ε, as a function of rs.
The solid curve shows the results obtained in this work
for full screening. The dotted curve represents the re-
sults of Ref. [36]; the dashed line refers to the calcu-
lations of Ref. [40]; the dashed-dotted curve is that of
Refs. [37, 38]; and the short dashed curve is that of
Ref. [39]. The FHNC-values correspond to the Fermi
hypernetted-chain theory results, Ref. [15]; CA-values
refer to Ceperley and Alder, Ref. [5]; OB-values to Or-
tiz and Ballone, Refs. [13, 41]; finally, VMC-values to
Kwon et al., Ref. [14]. The behavior of the energy per
particle, ε, at small rs (0–2) is shown in the inset.

In Figs. 3–7, the thermodynamic properties for the
same κ-values are shown as functions of the density pa-
rameter rs at T = 1000 K. Both pressure and entropy
fall rapidly to zero with increasing rs. When rs increases
further, particularly at rs ≥ 2, the pressure and the en-
tropy curves become identical for both bare and screened
Coulomb potentials. The degree of order of the system
decreases as κ increases at the same density, as shown
in Fig. 4. In contrast to the entropy, however, there is
a monotonic decrease in the pressure when the screening
effect is included, as shown in Figs. 3, 4. On the other
hand, at low density, the concentration of the particles
in the system is less than at high density, which reduces
both the pressure and the entropy in this latter density
range.

Other thermodynamic properties that have been stud-
ied are the chemical potential µ, the Helmholtz free en-
ergy F , and the heat capacity Cv. These are displayed
in Figs. 5, 6 and 7, respectively. With increasing rs, µ as
well as Cv decrease steadily, whereas F increases.

The chemical potential is calculated from the condition
N =

∑
k〈n̂k〉. As shown in Fig. 5, for full screening µ de-

creases steadily with increasing rs, but remains positive.
In this case, the system behaves like an ideal Fermi gas
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Fig. 3. The rs- (i.e., density-) dependence of the pres-
sure for the electron fluid with the static screened po-
tential for various values of κ. This is essentially the
equation of state for the system.

Fig. 4. The entropy per unit volume, S/Ω , for the elec-
tron fluid as a function of rs for different values of κ.

in its ground state (µ ∝ r−2
s ). This behavior is readily

understood, the lowest energy state of the system be-
ing obtained by filling the energy levels up to µ = εF.
Clearly, there is a tangible change in the behavior of µ
with decreasing rs at different κ. For rs ≤ 5, µ is highly-
-dependent on density, but becomes almost constant at
rs ≥ 5. This is because, in the high-density region, the
system needs much more energy to add (remove) a parti-
cle. For the bare Coulomb potential, where µ is negative,
the system behaves just like the classical ideal gas; while
for full screening, where µ is positive definite, the sys-
tem is quantal. It is recalled in this connection that in
the classical ideal gas (the Boltzmann statistics) µ always
takes negative values (of large absolute value); whereas
in the Fermi statistics µ can be positive or negative. This
underlines the profound effect of the screening effect on µ.

The free-energy curve, shown in Fig. 6, has a linear
behavior for small rs, where the system behaves like an
ideal gas. As rs increases, F for both bare and screened
Coulomb potentials increase steadily to a limiting value.
Clearly, screening has a maximal effect on F at all tem-
peratures considered.

Fig. 5. The chemical potential µ versus rs for different
κ-values at fixed temperature (T = 1000 K).

Fig. 6. The free energy, F , for the electron fluid, with
a screened potential, versus rs for selected values of κ.

The modification of the thermodynamic calculations
by virtue of the screening effect is, however, well-reflected
in Cv. Clearly, Cv is more sensitive to rs for the bare
Coulomb potential than for the full-screened interaction,
as shown in Fig. 7. In particular, a striking difference can
be seen between the two potentials in the high-density

Fig. 7. The heat capacity per unit volume, Cv/Ω , at
T = 1000 K as a function of rs for selected values of κ.
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region, unlike the low-density region. The oscillations in
Cv at low rs may be spurious, but the general trend of
the curves at different values of κ could be real.

We turn now to the T -dependence of the thermody-
namic properties. Our calculations were carried out for
a fixed rs = 3.93 (pertaining to Na) in the T -range
(1−9)× 104 K. The resulting thermodynamic properties
are plotted at various T in Figs. 8–12.

Fig. 8. The temperature-dependence of the energy per
particle ε (upper diagram), and the free energy F (lower
diagram) of the electron fluid at fixed rs = 3.93 for
different κ.

Fig. 9. The temperature-dependence of the pressure P
at fixed rs = 3.93.

Clearly, there is a monotonic increase with T of all
quantities, except µ which decreases with T . As shown
in Figs. 8–12, the screening effect “improves” the results
of this work for ε, F , S/Ω and µ.

Fig. 10. The temperature-dependence of the heat ca-
pacity Cv/(TΩ) at fixed rs = 3.93.

Fig. 11. The temperature-dependence of the chemical
potential µ at fixed rs = 3.93.

The energy per particle ε (upper diagram) and the free
energy F (lower diagram) are plotted in Fig. 8 for differ-
ent values of κ. The screening effect shifts ε as well as F
to higher values, where the system is in scattering rather
than bound states. For such density and low-T ranges, ε
is almost proportional to T ; but F decreases rapidly to

Fig. 12. The temperature dependence of the entropy
per unit volume S/Ω at fixed rs = 3.93 for various κ.
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a limiting value. However, screening has almost no effect
on P and Cv at all temperatures considered.

The pressure P , which is plotted in Fig. 9 as a function
of T , has almost a fixed value below the Fermi tempera-
ture TF ≈ 3.77×104 K; but increases rapidly to a limiting
value above this value. Clearly, the screening effect is to
shift P -values in the regime T < TF, where the system
behaves like as an ideal gas; but it has a reduced effect
above TF, where the interparticle interaction has a major
role.

The electronic specific heat is a fundamental quantity
in the theory of electrons in metals. For ideal Fermi sys-
tems, the electronic specific heat capacity is linear with
temperature [42]. The fitted curves of Fig. 10, Cv/(TΩ),
are found to satisfy the linear relation Cv/(TΩ) = 2 +
0.36T Å−5 K−1. At very low temperatures, our results
are close to the ideal case. As the temperature increases,
the interaction plays a more appreciable role. Our results
in Fig. 10 show that the electronic specific heat capacity
is independent of the screening strength.

As shown in Fig. 11, µ decreases steadily below TF; but
falls rapidly with increasing T . It is clear from the figure
that µ for the screened Coulomb potential is greater than
for the bare potential. The chemical potential decreases
from εF at T = 0, to smaller and smaller values, until
µ = 0 just below TF at which even the single-particle
ground state is unlikely to be occupied. After this point,
µ becomes negative. As T rises, the electron fluid even-
tually begins to mimic the classical behavior: µ decreases
and becomes increasingly negative.

The entropy per unit volume S/Ω is displayed in
Fig. 12. S/Ω increases linearly as T rises, more mi-
crostates becoming available. When T rises further, S/Ω
converges to a limiting value for both screened and bare
Coulomb potentials. In this case, screening has little ef-
fect on the entropy, and the system behaves like an ideal
gas.

As a next step in the present work, the pair-correlation
function g(r) is calculated at T = 1000 K for the sys-
tem within the SFA scheme. Figure 13 displays our cal-
culations for the smoothed pair-correlation function at
different rs values. Unlike in most standard theories of
the electron fluid, where g(r) becomes negative at small
distances in the metallic range which is a well-known un-
physical feature of these approximations, g(r) obtained in
the present calculations is positive definite for all values
of distance and density. This function should approach
one when r becomes larger than the interparticle sepa-
ration. In our work, g(r) approaches 0.99 in this limit,
which is close to one. This small discrepancy may be at-
tributed to the accuracy less than 100% of the computer
code used here.

The behavior of the pair-correlation function should
satisfy the cusp condition gσ1σ2(r) ≤ 1 [33]. Our results
shown in Figs. 13 and 14 satisfy this condition.

There is a disagreement between our results for the
average pair-correlation function g(r → 0; rs) and those
of quantum Monte Carlo calculations [34]. In our results,

Fig. 13. The pair-correlation function g(r) for the elec-
tron fluid as a function of kFr for various densities.

Fig. 14. The parallel pair-correlation function evalu-
ated in the present approximation for various densities,
compared to the Hartree–Fock result [10, 27, 28].

as r → 0, this function→ 0.5; whereas in [34] g↑↓(r), goes
to 0.25 as r → 0, in the high-density limit and falls down
to zero in the low-density limit. This means that the
average pair-correlation function in [34] ranges from 0.25
at high density to zero at low density.

In spite of the discrepancy between our results and
quantum Monte Carlo results as r → 0, the general be-
havior of our pair-correlation function is consistent with
those results, especially in the high-density limit. In
quantum Monte Carlo calculations, g↑↓(r) increases dras-
tically to its saturated value (≈ 1), and the saturation
point shifts up as the density decreases. In our work, the
saturation point for the average pair-correlation function
increases as the density decreases with a rate greater than
in quantum Monte Carlo calculations [34].

In Fig. 14, our parallel pair-correlation function is plot-
ted as a function of kFr for various values of rs. For com-
parison purposes, the corresponding Hartree–Fock func-
tion is displayed in the same figure. This is repeated for
the total pair-correlation function in Fig. 15. The two
total pair-correlation functions have the same behavior.

The fundamental requirements for the parallel and to-
tal pair-correlation functions — evident from their defi-
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Fig. 15. The SFA-pair-correlation functions, g(r)
(solid curve) and g↑↑(r) (dashed line). The Hartree–
Fock values, gHF(r) and gHF

↑↑ (r), are also shown (dotted
curves).

nitions, i.e., g(r) ≥ 0, g↑↑(r) ≥ 0 and g↑↑(0) = 0 — are
completely satisfied in the present calculations at any
electron density.

In many published works, the cusp property gσ1σ2(r) ≤
1 is violated [27], and in other works, unphysical (nega-
tive) values of g(r) are present [12, 43–45]. These unphys-
ical features still plague many calculations of g(r). On
the other hand, in most previous papers, g(r) reaches
the saturation point at r

rs
≈ 1 [27, 33, 34, 46–48]. In

the present work, this behavior is missing; the saturation
point depends on the system density.

It can easily be ascertained that the results of this work
for the parallel and anti-parallel pair-correlation function,
given by Eq. (47), are reduced to those in the HF approx-
imation, given by Eq. (43), when the 〈∆n̂k∆n̂p〉 terms in
the SFA scheme are ignored. This is reasonable because
our work is, in effect, a generalized mean-field (HF) ap-
proximation.

The pair-correlation function at zero interparticle sep-
aration, g(0), has been computed using SFA in the range
1 ≤ rs ≤ 6. It is found that g(0) = 0.5 over this range. In
general, there are wide differences in the published val-
ues of the g(0) [12, 43–45, 48–53]. Gori-Giorgi et al. [34]
found that g(0) at high density, rs = 1, is close to 0.25,
and decreases to zero at rs = 10. Also, g(r) was com-
puted for the uniform electron gas using the Overhauser
potential [50]. In the limit r → 0, the results varied
from 0.27 at rs = 1 to zero at rs = 10. The ladder theory
was used by Zhixin [53] to calculate g(0). From these
and other calculations, it is evident that the dependence
on the method used appears most sharply as the density
decreases. Several other formalisms give negative val-
ues for g(0) at sufficiently large rs in the metallic range
[12, 43–45, 50–52]. Since g(0) must be positive, this un-
physical feature should be given special attention. The
inconsistency between our results and other published re-
sults may indicate that the Yukawa screening potential
is not suitable at low densities.

5. Conclusions

In summary, we have presented in this work a theoret-
ical study of the thermodynamic properties and of the
pair-correlation function for the three-dimensional elec-
tron fluid. The calculations, based on the screening po-
tential as the input interaction between electrons, have
been undertaken with the static fluctuation approxima-
tion. Predictions of the present approach for the ther-
modynamic properties appear to be sound on general
physical grounds and compare favorably to other many-
-body techniques. The best agreement is obtained in
the weak- and intermediate-coupling strength. For the
pair-correlation function, the present calculations give
positive values for all densities. Furthermore, the pair-
-correlation at zero-interparticle separation is positive
definite for any electron density. The results obtained
are close to those given by the HF approximation, since
our work is based on a generalized mean-field approxi-
mation.
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