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Perturbation to Symmetry and Adiabatic Invariants
of General Discrete Holonomic Dynamical Systems
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This paper investigates perturbation to the Noether symmetry of discrete holonomic nonconservative
dynamical systems on a uniform lattice. Firstly, we give the Noether theorem of system. Secondly, both criterion
of perturbation to the Noether symmetry and the Noether adiabatic invariants of system are obtained. Finally,
an example is given to illustrate these results.
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1. Introduction

Symmetries play important roles in mathematics,
physics and mechanics. Since Noether unveiled the pro-
found relations between symmetries and conservation
laws, many researches on them were done [1–15]. Re-
cently, symmetry theories have been extended to discrete
mechanics and equations [16–25].

As we know, even tiny changes in symmetry, named
as perturbation to symmetry, are of great importance for
physical systems. Based on the definition of adiabatic
invariants, the relationship of perturbation to symmetry
with adiabatic invariants are constructed. It offers an
opportunity for the quasi-integrability in dynamical sys-
tems [26, 27]. Therefore, perturbation to symmetry and
adiabatic invariants became a popular subject recently.
The notion of approximate conservation laws was intro-
duced with regards to approximate Noether symmetry by
Baikov et al. [28]; Kara et al. [29, 30] extended Baikov’s
ideas. Fu and Chen et al. [31, 32] studied the perturba-
tion to the Lie symmetry and adiabatic invariants. Zhang
et al. [33] deduced a new type of adiabatic invariants
from perturbation to the Lie symmetry in 2006. Luo [34]
gave another new type of adiabatic invariants called the
Lutzky adiabatic invariants lately. These studies further
inspire interests in research about adiabatic invariants
[35–37].

However, researches about perturbation to symmetry
and adiabatic invariants are all considered in continuous
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systems. In this paper, we firstly study the Noether sym-
metry and Noether exact invariants of discrete noncon-
servative dynamical systems. Secondly, we study pertur-
bation to symmetry and adiabatic invariants of discrete
dynamical systems. Finally, we give an example to illus-
trate the application of these results.

2. Definitions and notations

We consider [19] the space Z of sequence (t, qs, q̇s), and
in the space Z, we define a map (differentiation), obeying
to the rule: D(t) = 1, D(qs) = q̇s, D(q̇s) = q̈s. D is the
action of the first order linear differential operator

D =
∂

∂t
+ q̇s ∂

∂qs
+ q̈s ∂

∂q̇s
+ . . . (s = 1, . . . , n) . (1)

An arbitrary value of parameter h > 0 is fixed and with
the help of the tangent field (1), we form the operators
of discrete translation to the right and left

S
+h

= ehD ≡
∞∑

i=0

hi

i!
Di, S

−h
= e−hD ≡

∞∑

i=0

−hi

i!
Di. (2)

The operators S
+h

, S
−h

commute with each other, while

S
+h
· S
−h

= S
−h
· S
+h

= 1.

Using the simplest invariant lattice h in t-direction, we
introduce a pair of linear difference operators S+h and
S−h, which are defined by

S
+h

qs = qs+, S
−h

qs = qs−. (3)

Moreover, with the help of S+h and S−h, we can form a
pair of operators of discrete (finite-difference) differenti-
ation to the right and left

D
+h

= S+h−1
h

=
∞∑

i=1

h(i−1)

i!
Di,

(298)
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D
−h

=
1− S−h

h
=

∞∑

i=1

(−h)(i−1)

i!
Di. (4)

The operators S+h, S−h, D+h and D−h commute in any
combination, while D+h = D−h S+h, D−h = D+h S−h,
and it follows corresponding finite-difference Leibniz rule:

D
+h

(FG) = D
+h

(F )G + F D
+h

(G) + h D
+h

(F ) D
+h

(G) ,

D
−h

(FG) = D
−h

(F )G + F D
−h

(G)− h D
−h

(F ) D
−h

(G) . (5)

3. Noether symmetry and exact invariants
of discrete holonomic nonconservative

dynamical systems

Suppose that the configuration of a mechanical sys-
tem is determined by n generalized coordinates qs (s =
1, . . . , n), the Lagrangian of the system is L(t, q, q̇). For
a positive integer k, the discrete Hamilton action of the
system is the map defined by:

Md =
∑

Ld(t, qs, qs
k)h , (6)

where Ld(t, qs, qs
k) is the corresponding discrete La-

grangian and the corresponding difference derivative to
right and left are

qs
k = D

+h
(qs) =

qs+ − qs

t+ − t
=

qs+ − qs

h
,

q
s
k = D

−h
(qs) =

qs − qs−

t− t−
=

qs − qs−

h
. (7)

The infinitesimal transformations are introduced with
respect to time and generalized coordinates as

t∗ = t + ∆t, qs∗(t∗) = qs(t) + ∆qs

(s = 1, . . . , n) . (8)
Expanding above formulation, we have

t∗ = t + εξα
00(t, q

s, q̇s) , qs∗ = qs + εξα
s0(t, q

s, q̇s) ,

(s = 1, . . . , n; α = 1, . . . , γ) , (9)
where ε is infinitesimal parameter and ξα

00(t, q
s, q̇s),

ξα
s0(t, q

s, q̇s) constitute the Lie group of infinitesimal
transformation. The infinitesimal transformation oper-
ator (i.e. the generalized Noether-type operator) is intro-
duced as

X = ξα
00

∂

∂t
+ ξα

s0

∂

∂qs
+ [D

+h
(ξα

s0)− qs
k D

+h
(ξα

00)]
∂

∂qs
k

+ . . . + h D
+h

(ξα
00)

∂

∂h
. (10)

We used the simplest invariant lattice which is regular
with the constant step h.

Under the infinitesimal transformation (8), the discrete
Hamilton action becomes

M∗
d =

∑
Ld(t∗, qs∗, qs∗

k )h∗, (11)
where h∗ = (1 + D+h(∆t))h = (1 + εD+h(ξα

00))h and ∆
expresses the total variation.

Definition 1. If Hamilton action of discrete holonomic
nonconservative system is generalized quasi-invariant

under the infinitesimal transformation (8), i.e.

∆Md =
∑

Ldh−
∑

L∗dh
∗

= −
n∑

s=1

{D
+h

(∆Gd) + Qs
dδdq

s}h (12),

we call (8) the discrete analogue of general-
ized Noether quasi-symmetry transformation.
Gd = Gd(t, qs, qs

k), Qs
d = Qs

d(t, q
s, qs

k) are the dis-
crete gauge function and discrete nonconservative forces.
Qs

dδdq
s are the discrete analogue of the virtual work for

nonconservative generalized forces.
Making use of the relation ∆qs = δdq

s + qs
k∆t, ∆qs

k =
δdq

s
k + (qs

kk)∆t (where q
s
kk = D−h D+h qs) and the com-

mute relation D+h(δdq
s) = (δdq

s
k), and after direct cal-

culations by applying the Leibniz rule of (forward) dif-
ference as the discrete derivative, we can obtain the fol-
lowing formulation form (12):

∂Ld

∂t
∆t +

∂Ld

∂qs
∆qs +

∂Ld

∂qs
k

(D
+h

(∆qs)− qs
k D

+h
(∆t))

+Ld D
+h

(∆t) + Qs
dδdq

s + D
+h

(∆Gd) = 0 . (13)

Substituting the infinitesimal transformation (9) into
Eq. (13), and considering the independence of parame-
ter ε of the Lie group, we have

∂Ld

∂t
ξα
00 +

∂Ld

∂qs
ξα
s0 +

∂Ld

∂qs
k

[D
+h

(ξα
s0)− qs

k D
+h

(ξα
00)]

+Ld D
+h

(ξα
00) + Qs

d(ξ
α
s0 − qs

kξα
00) + D

+h
(Gα

d ) = 0 , (14)

where we made use of ∆Gd =
∑γ

α=1 εαGα
d . From defini-

tion 1, we have:

Criterion 1. If the infinitesimal transformation (8)
satisfies (13), it is called the Noether generalized quasi-
-symmetry transformation of the discrete holonomic non-
conservative dynamical systems.

Criterion 2. If the infinitesimal transformation (9)
satisfies (14), it is called the Noether generalized quasi-
-symmetry transformation of the discrete holonomic non-
conservative dynamical systems.

We name (14) the discrete analogue of generalized
Noether-type identity for this discrete holonomic non-
conservative system. Equation (14) can be expressed as

∂Ld

∂t
ξα
00 +

∂Ld

∂qs
ξα
s0 +

∂Ld

∂qs
k

[D
+h

(ξα
s0)− qs

k D
+h

(ξα
00)]

+Ld D
+h

(ξα
00) + Qs

d(ξ
α
s0 − qs

kξα
00) + D

+h
(Gα

d )

= ξα
00

[
∂Ld

∂t
+ D
−h

(
qs
k

∂Ld

∂qs
k

− Ld

)
− qs

kQs
d

]

+ ξα
s0

[
∂Ld

∂qs
− D
−h

(
∂Ld

∂qs
k

)
+ Qs

d

]
+ D

+h

{
ξα
00 S
−h

(Ld)



300 P. Wang, H.-J. Zhu

+
[
ξα
s0 − S

−h
(qs

k)ξα
00

]
S
−h

(
∂Ld

∂qs
k

)
+ Gα

d

}
= 0 . (15)

If there exists generalized quasi-extremal equation for
discrete holonomic nonconservative system, such as

ξα
00

[
∂Ld

∂t
+ D
−h

(
qs
k

∂Ld

∂qs
k

− Ld

)
− qs

kQs
d

]

+ ξα
s0

[
∂Ld

∂qs
− D
−h

(
∂Ld

∂qs
k

)
+ Qs

d

]
= 0 . (16)

We can obtain the difference analogues of generalized
Euler–Lagrange equations

D
−h

(
∂Ld

∂qs
k

)
− ∂Ld

∂qs
= Qs

d (17)

and energy equations
∂Ld

∂t
+ D
−h

(
qs
k

∂Ld

∂qs
k

− Ld

)
− qs

kQs
d = 0 . (18)

Correspondingly, the discrete analogue of conservation
law of the system is

D
+h

[
ξα
00 S
−h

(Ld) +
[
ξα
s0 − S

−h
(qs

k)ξα
00

]

× S
−h

(
∂Ld

∂qs
k

)
+ Gα

d

]
= 0 , (19)

namely Noether exact invariants
I0
d = ξα

00 S
−h

(Ld) +
[
ξα
s0 − (qs

k)ξα
00

]

× S
−h

(
∂Ld

∂qs
k

)
+ Gα

d = const. (20)

The difference Eqs. (19) and (20) are called the differ-
ence analogue of the Noether conservation laws associ-
ated with such a discrete holonomic nonconservative sys-
tem. The difference Eqs. (19) and (20) form the invariant
schemes on regular lattice h and thus coincide with the
difference Noether conservation laws.

We should point out that the first item of (16) “disap-
pears” in continuous limit since the operator in brackets
tends to zero as h→ 0.

Theorem 1. If the Lie group (9) of the infinitesimal
transformations of the discrete system (16) on a uni-
form mesh h, are the Noether generalized quasi-symmetry
transformation, in the condition that the discrete gauge
functions Gα

d exist, then the holonomic nonconservative
system has the discrete analogue of the Noether conserved
quantity (19) or (20).

Theorem 2. If the Lie group (9) of the infinitesimal
transformations of the discrete system (17) and (18) on
a uniform mesh h, are the Noether generalized quasi-
-symmetry transformation, in the condition that the dis-
crete gauge functions Gα

d exist, then the holonomic non-
conservative system has the discrete analogue of the
Noether conserved quantity (19) or (20).

We call theorems 1 and 2 the discrete analogue of gen-
eralized Noether theorems of discrete holonomic noncon-
servative systems.

4. Perturbation to symmetry and adiabatic
invariants of discrete holonomic

nonconservative dynamical systems

Suppose systems (17) and (18) are perturbed by small
quantity εW s

d = εW s
d (t, qs, qs

d), the equations of discrete
holonomic nonconservative dynamical systems become

D
−h

(
∂Ld

∂qs
k

)
− ∂Ld

∂qs
= Qs

d + εW s
d (21)

and
∂Ld

∂t
+ D
−h

(
qs
k

∂Ld

∂qs
k

− Ld

)
− qs

k(Qs
d + εW s

d ) = 0 . (22)

Due to the action of εW s
d , the primary symmetries and

invariants of systems (17) and (18) may vary. The vari-
ation is assumed as a small perturbation based on the
symmetrical transformation of the initial system, then
ξα
0 , ξα

s which denote the new generators after being per-
turbed, can be expressed as

ξα
0 = ξα

00 + εξα
01 + ε2ξα

02 + . . . ,

ξα
s = ξα

s0 + εξα
s1 + ε2ξα

s2 + . . . (23)
The new generators satisfy

∂Ld

∂t
ξα
0 +

∂Ld

∂qs
ξα
s +

∂Ld

∂qs
k

[D
+h

(ξα
s )− qs

k D
+h

(ξα
0 )]

+Ld D
+h

(ξα
0 ) + Qs

d(ξ
α
s − qs

kξα
0 ) + εW s

d (ξα
s − qs

kξα
0 )

+ D
+h

(Gα
d ) = 0 . (24)

If we assume
Gα

d = Gα
d0 + εGα

d + ε2Gα
d2 + . . . , (25)

and substitute (23) and (25) into (24), we have
∂Ld

∂t
ξα
0m +

∂Ld

∂qs
ξα
sm +

∂Ld

∂qs
k

[D
+h

(ξα
sm)− qs

k D
+h

(ξα
0m)]

+Ld D
+h

(ξα
0m) + Qs

d(ξ
α
sm − qs

kξα
0m) + W s

d (ξα
sm−1

− qs
kξα

0m−1) + D
+h

(Gα
dm) = 0 (m = 0, 1, 2, . . .). (26)

When m = 0, the condition W s
d = 0.

The generalized Noether-type operator for perturbed
system becomes

X = ξα
0

∂

∂t
+ ξα

s

∂

∂qs
+ [D

+h
(ξα

s )− qs
k D

+h
(ξα

0 )]
∂

∂qs
k

+ . . . + h D
+h

(ξα
0 )

∂

∂h
. (27)

Substituting (23) into (27), we have
X = εmXm , (28)

where

Xm = ξα
0m

∂

∂t
+ ξα

sm

∂

∂qs
+ [D

+h
(ξα

sm)− qs
k D

+h
(ξα

0m)]
∂

∂qs
k

+ . . . + h D
+h

(ξα
0m)

∂

∂h
. (29)

So we can give the criterion of perturbation to the
Noether symmetry of the system
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Criterion 3. For perturbed discrete systems (21)
and (22), if the infinitesimal transformation generators
ξα
0m, ξα

sm satisfy (26), and there exists gauge function
Gα

dm = Gα
dm(t, qs, qs

k), the corresponding variety of the
Noether symmetry of discrete holonomic nonconservative
dynamical system is called perturbation to the Noether
symmetry.

According to the definition of adiabatic invariants
in Ref. [29], we can give

Definition 2. For systems (21) and (22), if a physical
quantity Iz

d (t, qs, qs
d, ε) satisfies

D
+h

(Iz) = O(εz+1) (30)

where
Iz
d = I0

d0 + εI1
d1 + . . . + εzIz

dz , (31)
Iz
d is called a z-th-order adiabatic invariant of systems.

Based on the definition 2 and the criterion 3, we have
the following theorem:

Theorem 3. For the systems (21) and (22), which
are perturbed by a small physical quantity εW s

d , if the
generators ξα

0m, ξα
sm of the infinitesimal transformations

are perturbation to the Noether symmetry (i.e. the gener-
ators ξα

0m, ξα
sm satisfy criterion 2), the systems have dis-

crete analogue of z-th-order adiabatic invariants which
can be written in the following form:

Iz
d =

z∑
m=0

εm

{
ξα
0m S

−h
(Ld) + [ξα

sm − (qs
k)ξα

0m]

× S
−h

(
∂Ld

∂qs
k

)
+ Gα

dm

}
. (32)

When z = 0,W s
d = 0 holds.

Proof: Calculating the discrete derivative of Iz
d , tak-

ing consideration of (26) and following the Leibniz rule,
we have:

D
+h

(Iz
d ) = ξα

0m D
−h

(Ld) + (ξα
sm − qs

kξα
0m) D

−h

(
∂Ld

∂qs
k

)

+ D
−h

(qs
k)ξα

0m

∂Ld

∂qs
k

− ξα
0m

∂Ld

∂t
− ξα

sm

∂Ld

∂qs

− Qs
d(ξ

α
sm − qs

kξα
0m)−W s

d (ξα
sm−1 − qs

kξα
0m−1)

= ξα
0m

[
D
−h

(
Ld − qs

k

∂Ld

∂qs
k

)
− ∂Ld

∂t
+ qs

kQs
d

]

+ ξα
sm

[
D
−h

(
∂Ld

∂qs
k

)
− ∂Ld

∂qs
−Qs

d

]

−W s
d (ξα

sm−1 − qs
kξα

0m−1) . (33)
Making use of Eqs. (21) and (22), after deduction, we
have

D
+h

(Iz
d ) =

z∑
m=0

[
εW s

d (ξα
sm − qs

kξα
0m)

−W s
d (ξα

sm−1 − qs
kξα

0m−1)
]
.

Expending the above formula and making summation,
we obtain

D
+h

(Iz
d ) = εz+1

n∑
s=1

W s
d (ξα

sz − qs
kξα

0z) . (34)

It shows that D+h(Iz
d ) is in direct proportion to εz+1,

thus Iz
d is discrete analogue of z-th-order adiabatic in-

variants for discrete disturbed holonomic nonconserva-
tive systems (21), (22).

5. Illustrating example

The dynamical systems with discrete Lagrangian

L =
1
2

[
(q1

k)2 + (q2
k)2

]− q2 (35)

and nonconservative forces are

Q1
d = q1

k , Q2
d =

t+ + t

2
− q2

k . (36)

Let us study its exact invariants and adiabatic invariants.
The discrete analogue of generalized Noether type

identity of this system is
−ξα

20 + q1
k[D

+h
(ξα

10)− q1
k D

+h
(ξα

00)]

+ q2
k[D

+h
(ξα

20)− q2
k D

+h
(ξα

00)] + Ld D
+h

(ξα
00)

+ q1
k(ξα

10 − q1
kξα

00) +
(

t+ + t

2
− q2

k

)
(ξα

20 − q2
kξα

00)

+ D
+h

(Gα
d ) = 0 . (37)

It has two groups of solution

ξα
00 = 0 , ξα

10 =
t+ + t

2
, ξα

20 = 1 ,

Gα
d = q2 +

t+ + t

2
(1− q1

k)− 1
2

(
t+ + t

2

)2

, (38)

ξα
00 = 0 , ξα

10 = 0 , ξα
20 = 1 ,

Gα
d = q2 +

t+ + t

2
− 1

2

(
t+ + t

2

)2

. (39)

So they are Noether symmetrical. According to (20), we
can get discrete Noether conserved laws as

Iα
d 01 = q2 + q2−

k + (q1k − q1
k + 1)

t+ + t

2

− 1
2

(
t+ + t

2

)2

= const , (40)

Iα
d 02 = q2 + q

2
k +

t+ + t

2
− 1

2

(
t+ + t

2

)2

= const . (41)

In the following, we will study the first order adiabatic
invariants of system. Suppose the system is perturbed
by
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εW 1
d = ε2q

2
kkq2

k , εW 2
d = −εq2. (42)

Let m = 1, then Eqs. (26) give
−ξα

21 + q1
k[D

+h
(ξα

11)− q1
k D

+h
(ξα

01)] + q2
k[D

+h
(ξα

21)

− q2
k D

+h
(ξα

01)] + Ld D
+h

(ξα
01) + q1

k(ξα
11 − q1

kξα
01)

+
(

t+ + t

2
− q2

k

)
(ξα

21 − q2
kξα

01) + 2q
2
kkq2

k(ξα
10

− q1
kξα

00) + q2(ξα
20 − q2

kξα
00) + D

+h
(Gα

d1) = 0 . (43)

We can work out solution as
ξα
01 = 1 , ξα

11 = q1 , ξα
21 = 0 ,

Gα
d 11 =

1
2
(q1)2 + q2 t+ + t

2
− (q2

k)2
t+ + t

2
, (44)

when we make use of the Noether symmetry generators
ξα
00 = 0, ξα

10 = t++t
2 , ξα

20 = 1.
We can work out another group of solutions as

ξα
01 = 1 , ξα

11 = q1 , ξα
21 = q2

k +
t+ + t

2
,

Gα
d 12 =

1
2
[(q1)2 + (q2

k)2]− q2 t+ + t

2

+
(

t+ + t

2

)3 (
1
3
− 1

t+ + t

)
(45)

when we make use of the Noether symmetry generators
ξα
00 = 0, ξα

10 = 0, ξα
20 = 1.

The corresponding first order discrete Noether adia-
batic invariants are

Iα
d 11 = Iα

d 01 + ε

{
q1q1

k − q2 − 1
2
[(q1k)2 + (q2k)2

− (q1)2] + [q2 − (q2
k)2]

t+ + t

2

}
. (46)

and

Iα
d 12 = Iα

d 01 + ε
{

q1q1
k − q2 + q2

kq
2
k −

1
2
[(q1k)2

− (q1)2] + (q2k)2 − (q2
k)2

}
+ (q2k − q2)

t+ + t

2

+
(

t+ + t

2

)3 (
1
3
− 1

t+ + t

)
. (47)

Furthermore, we can obtain higher order adiabatic in-
variants.

6. Conclusion

In this paper, (1) we obtain the Noether exact in-
variants for discrete holonomic nonconservative systems;
(2) we propose both the criterion of the perturbation
to the Noether symmetry and the Noether adiabatic in-
variants of discrete holonomic nonconservative systems.
These results can be also extended to discrete nonholo-
nomic dynamical systems.
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