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Double Reflection of Electron Spin in Semiconductors
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Reflection of spin-polarized electron from a potential barrier in bulk semiconductor in the presence of
spin–orbit interaction is considered. The spin–orbit interaction brings about double electron reflection at oblique
incidence of electronic beam onto the barrier. The competition between the Rashba and Dresselhaus spin–orbit
mechanisms during double reflection is discussed. The problem was solved within the Clifford algebra framework,
which allows one to describe the spin in a real Euclidean E3 space rather than in an abstract Hilbert space.
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1. Introduction

Recently it was shown that spin-polarized electron re-
flection off and transmission through a semitransparent
barrier with spin–orbit (SO) interaction included is sim-
ilar to polarized light behavior in a birefringent crystal
[1–4]. In particular, in paper [4] it was shown that at
oblique electron incidence the reflected beam in the quan-
tum well is in a superposition of two beams having differ-
ent wavelengths and reflection angles. This produces a
two-period spatial spin beating pattern. Only Rashba SO
interaction mechanism was taken into account. In this
report the competition between the Rashba and Dressel-
haus SO mechanisms in bulk cubic semiconductor dur-
ing double spin reflection is discussed. The problem of
spin reflection is formulated and solved within the Clif-
ford algebra [5, 6] framework. In the second section the
Hamiltonian is considered. The results on spin reflection
are presented in the third section.

2. Hamiltonian and eigenbivectors

The Schrödinger equation for conduction band electron
in a cubic semiconductor, when the SO interaction is in-
cluded, has the following compact form after its transfor-
mation to Cl3,0 noncommutative Clifford algebra [4, 6, 7],

∂ψ

∂t
Iσ3 = ε0ψ + εψσ3 . (1)

Here σ1, σ2 and σ3 are basis vectors and I = σ1σ2σ3

is the pseudoscalar. The basis vectors are isomorphic to
the Pauli matrices and satisfy σ2

i = 1, σiσj + σjσi = 0.
In the following the bivectors Iσ1 = σ2σ3, Iσ2 = σ3σ1

and Iσ3 = σ1σ2, which represent the orientated planes,
will be used, too. The right-hand side of (1) may be
thought of as a Hamiltonian function of the multivector
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ψ (analogue of the spinor in the traditional formulation),
H(ψ) = ε0ψ + εψσ3 . (2)

Equation (1) has an invariant form with the quantization
axis parallel to direction σ3. The scalar ε0 describes the
degenerate conduction band spectrum

ε0 = k · k/2m∗ =
(
k2
1 + k2

2 + k2
3

)
/2m∗, (3)

where ki’s are the components of electron wave vector
k = k1σ1 + k2σ2 + k3σ3 and m∗ is the effective mass.
The inner product of vectors is indicated by dot in (3).
As we shall see the vector ε in (1) is parallel to quan-
tum mechanical average spin of electron. When σi’s are
aligned with the cubic crystal axes the vector ε can be
expanded in components

ε = ε1σ1 + ε2σ2 + ε3σ3 . (4)
The projections εi (scalars) in the presence of the Dres-
selhaus and Rashba SO interaction are

ε1 = γDk1

(
k2
2 − k2

3

)
+ αR (k2n3 − k3n2)

and cycl. perm. (5)
Here αR and γD are the Rashba and Dresselhaus con-
stants. In (5), the projections εi are expressed through
the wave vector k and unit vector n = n1σ1 + n2σ2 +
n3σ3 normal to the Rashba plane. The vector ε =
εR + εD can be rewritten in an invariant form, too. The
Rashba term has the following coordinate-independent
shape

εR = αRIn ∧ k , (6)
where the wedge represents the outer product of two vec-
tors: a∧ b = (ab− ba)/2. For the Dresselhaus SO inter-
action the respective term is

εD = −γD

2

[
(k12σ1)2 + (k23σ2)2 + (k31σ3)2

]
k

− 3γD(k · σ1)(k · σ2)(k · σ3)I , (7)
where the vectors kij lie in the orthogonal planes in-
dicated by subscripts, k12 = (k − σ3kσ3)/2 and cycl.
perm. It should be noted that contrary to the Rashba
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contribution (6) here the basis vectors σ1, σ2 and σ3

cannot be eliminated altogether, since we must somehow
indicate the cubic crystal axes with respect to which the
Dresselhaus Hamiltonian has been written.

The solution of the multivector Schrödinger Eq. (1)
is∗∗

ψ(t) = ψiψεψε0 = ψi e−Iεt e−ε0Iσ3t, (8)
where ψi is the initial multivector at the moment t = 0
which satisfies the normalization condition ψ̃iψi = 1,
where the tilde denotes the reversion [6]. Equation (8)
describes the beating in spin-split band at average elec-
tron energy ε0 + ε3. In the Clifford algebra Cl3,0 the av-
erage of a multivector function O(ψ) is 〈O〉 = 〈ψ̃O(ψ)〉−
〈ψ̃O(ψ)Iσ3〉Iσ3, where the brackets denote the scalar
part [6]. The second term proportional to the bivector
Iσ3 usually is equal to zero [6]. Then, after the insertion
of time-dependent solution (8) one gets the following av-
erage energy: 〈ε〉 = 〈ψ̃H(ψ)〉 = ε0 + ε3. This energy
is different from spin-split subband eigenenergies ε+ and
ε−. In terms of ε0 and ε the latter are [7]:

ε± = ε0 ±
√

ε · ε̃ = ε0 ±
√

ε2
1 + ε2

2 + ε2
3 , (9)

where the quantity ε=

√
ε2
1 + ε2

2 + ε2
3 represents the spin

splitting energy ∆ε = 2ε. This shows that the solu-
tion (8) represents a superposition of the up and down
spin states.

In the analysis of spin reflection we shall need the
eigenbivectors ψ± (analogues of eigenfunctions) which
must satisfy the eigenbivector equation

H(ψ±) = ε±ψ± , (10)
where the Hamiltonian function is represented by (2).
Multiplying both sides of (10) by ψ̃ one can write
ψ̃±H(ψ±) = ε±, where the left and right hand sides
now are scalars. Insertion of a general quaternion ψ =
c0 + c1Iσ1 + c2Iσ2 + c3Iσ3, where ci’s are unknown
scalars, gives a system of equations that can be solved
with respect to scalars ci’s. This gives the following
eigenbivectors:

ψ± = − I(ε± εσ3)√
2ε(ε ± ε3)

. (11)

They are normalized: ψ̃+ψ+ = 1 and ψ̃−ψ− = 1. The
property ε2 = ε2 = ε2

1 + ε2
2 + ε2

3 was used in obtain-
ing (11). From the latter expression one sees that the
products Iψ+ and Iψ− represent two vectors which can
be obtained from the spin vector ε by adding the vectors
±εσ3. The denominator in (11) is nothing else than the
normalization constant.

The average spin vector s in the Clifford algebra is de-
termined by geometric product s = ψσ3ψ̃ [6]. Using the

∗∗ Here we shall take a chance to amend formulae (12) and (13)
in [7]. The correct ones are given, respectively, by (1) and (8) in
the present paper. This has no influence on subsequent material
of Ref. [7].

above eigenbivectors we can find that the average spin
vector for conduction band electron is

s± = ψ±σ3ψ̃± = ±ε/ε , (12)
which shows that the vector ε in the Hamiltonian func-
tion (2) is indeed linked with the average spin direction.
This is true for a general case independent of SO inter-
action type. Also, one can show that for an arbitrary SO
interaction the spin vector is not perpendicular to the
wave vector, since the product k · s 6= 0. However, in the
presence of the Rashba SO interaction only, when γD = 0
in (5), one can show that k · s = 0, in agreement with
the standard calculations in the Hilbert space.

3. Spin reflection from (100) barrier

We shall consider a beam of ballistic electrons that
bounce off an infinite barrier at x = 0, as shown in Fig. 1.
Here the basis vector (σ1, σ2,σ3) directions can be iden-
tified with x, y and z axes. The total spinor (multivec-
tor) Ψ+(x, y) in the region x > 0 consists of the sum of
quaternions that describe the incident wave ki+ at angle
γ and the reflected waves kr+ and kr− at angles α and β,
respectively,

Ψ+(x, y) = ψ+(γ)Ai+ eIσ3ki+·r

+ψ+(β)Ar+ eIσ3kr+·r + ψ−(α)Ar− eIσ3kr−·r,

where ψ± are eigenquaternions (11) and Ai’s are un-
known amplitudes (multivectors). For an infinite barrier
the boundary condition Ψ+(0, y) = 0 should be satis-
fied. Similar equation can be written for spinor Ψ−(x, y)
when the incident wave lies on ε− surface. When both
the Rashba and Dresselhaus mechanisms are included the
constant energy surfaces are rather complicated. By this
reason here we shall consider only symmetric case (com-
pare Fig. 1) when the barrier lies in (100)-type plane.

Fig. 1. Spin dependent reflection of electron having
the incident wave vector ki+ on ε+ surface. kr+ and
kr− are the wave vectors of reflected waves having op-
posite spin states. The dashed circles represent constant
energy surfaces ε+ = ε− in k-space. Since the compo-
nent ky is conserved during scattering process, one has
β + γ = π in this case.
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3.1. Dresselhaus SO interaction

When αD 6= 0 and αR = 0, the eigenbivectors (11)
become independent of material parameters. The reflec-
tion amplitudes |R++|2 and |R+−|2 then appear to be
independent of material parameters, too. The first and
second subscripts in R indicate the ingoing and outgo-
ing waves, respectively. Solid lines in Fig. 2a show the
reflection coefficients |R++|2 and |R+−|2 as a function
of x-projection kxi+ of the incident electron wave vector
ki+. The figure shows that at nearly vertical incidence,
when ky ≈ 0 and kxi+ is the largest, the extraordinary
wave characterized by |R+−|2 does not appear. At the
grazing incidence, when kxi+ ≈ 0, nearly all electronic
wave transforms to extraordinary wave. Similar behav-
ior is found when the ingoing wave is on ε− surface, as
shown by solid lines in Fig. 2b.

Fig. 2. Squared moduli of reflection coefficients vs.
incident electron wave vector component perpendicu-
lar to barrier. The wave vector is in atomic units,
1 a.u. = 18.89 nm−1. For all curves γD = 100 eV Å3.
Solid lines — αR = 0. Small dots — the Dressel-
haus contribution predominates, αR = 0.0057 eV Å.
Large dots — the Rashba contribution predominates,
αR = 0.1007 eV Å. (a) Incident electron wave vector
end lies on ε+ = 34 meV surface; the vertical dashed
lines show critical values of kxi+ component. (b) In-
cident electron wave vector end lies on ε− = 34 meV
surface.

3.2. Rashba SO interaction

When γR 6= 0 and γD = 0 we find that independently
of the incidence angle no superposition between spin-split
states takes place in this case at all. Only ordinary re-
flected waves are present. Before and after reflection the
average spin lies in x–y plane and always remains per-
pendicular to k.

3.3. Rashba+Dresselhaus SO interaction
The points in Fig. 2 show the results of numeri-

cal calculations. The small points correspond to rela-
tively weak influence of the Rashba interaction, αR =
0.0057 eV Å, while the large points correspond to in-
teraction where the Rashba contribution predominates,
αR = 0.1007 eV Å. The other parameters were m∗ =
0.1m0, γD = 100 eV Å3, the Fermi energy εF = 34 meV.
When the projections kxi+ and kxi− of the incident wave
are large (this corresponds to nearly normal incidence,
ky ≈ 0) we observe the extraordinary reflected beam
whose polarization is opposite to incident one. However,
at grazing incidence, when the projections kxi+ and kxi−
are small, one observes strong competition between the
Rashba and Dresselhaus mechanisms. If γ → π/2, the
Dresselhaus mechanism vanishes and the contribution of
the Rashba mechanism in the dispersion always becomes
predominant, as a result one observes a violent switching
from one to the other mechanism at small kxi+ and kxi−
values.

The vertical dashed lines in Fig. 2a show the critical
values for the total reflection of extraordinary waves, the
origin of which can be traced from Fig. 1. There is no
critical angle when the ingoing electron wave vector end
lies on ε− surface. As shown in [4] the interference be-
tween ordinary and extraordinary reflected waves gives
double-period spatial beating pattern in wave function
amplitude and spin components. Similar spin beating
was found in the present case.

4. Conclusions

In conclusion, it is shown that in bulk semiconduc-
tors in the presence of SO interaction and under an
oblique incidence the electron reflection from the barrier
occurs at two different angles which gives superpositions
of states having opposite spins and, consequently, spatial
spin beating between incident and two reflected waves.
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