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An algorithm for the Kramers–Kronig analysis of the reflectivity spectra, based on an anchor-window
technique is presented. The high-frequency asymptote, required for the Kramers–Kronig analysis, is determined
by minimizing differences between the Kramers–Kronig-deduced optical constants of a system under investigation
and known optical constants measured in a small anchor-window. The algorithm is illustrated by applying it for a
reconstruction of the optical conductivity σ(ω) of the fci-ZnMgRE quasicrystals in the spectral range of 0.01–6.5 eV
from the experimental IR Fourier-transform reflectivity data and the experimental spectral ellipsometry VIS-UV
data. The reliability of the suggested Kramers–Kronig analysis technique is confirmed by independent infrared
spectral ellipsometry σ(ω) measurements for fci-ZnMgRE.

PACS: 71.23.Ft, 78.20.Ci

1. Introduction

The infrared reflectance spectroscopy is a main tool
for optical investigations in the IR spectral range. The
optical parameters of a system under investigation, the
dielectric function ε(ω) or the optical conductivity σ(ω)
(which is directly related with the dielectric function as
ε(ω) = 1 + i4πσ(ω)/ω) are determined from the reflec-
tivity spectrum R(ω) making use of the Kramers–Kronig
(KK) relations. The KK analysis, however, requires for
extrapolations of the experimental data to the low- and
high-frequency limits, which usually essentially reduces
an accuracy of the analysis.

We present an algorithm of the Kramers–Kronig anal-
ysis based on an anchor-window technique. The high-
-frequency asymptote of the reflectivity spectrum is de-
termined by a minimization of differences between the
KK-deduced optical conductivity σKK(ω) and the known
σ(ω) values, measured a priori in a small anchor-window.
The algorithm is illustrated by reconstructing the wide-
-range, 0.01–6.5 eV, optical conductivity spectrum of fci-
-ZnMgRE (RE = Y, Ho) quasicrystals.

2. Experimental

The single-grain face-centred icosahedral (fci)
Zn62Mg29Y9 and Zn65Mg25Ho10 quasicrystals were
grown by the liquid-encapsulated top-seeded solution-
-growth method [1]. Prior to each optical measurement,
the optical surfaces of samples were mechanically
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Fig. 1. Experimental fci-ZnMgHo reflectivity R(ω)
and the optical conductivity σ(ω) spectra.

grind and fine-polished with a diamond paste (10 µm,
5 µm, 1 µm, and 0.25 µm) and an alumina suspension
(0.02 µm).

The IR reflectivity R(ω) spectra (Fig. 1) in the spec-
tral range 0.01–0.9 eV were measured by Fourier trans-
form spectrometer Nicolet 8700. The VIS-UV optical
conductivity σ(ω) spectra (Fig. 1) in the spectral range
0.73–6.5 eV were measured by spectroscopic ellipsome-
try (SE) technique by the rotating analyzer ellipsometer
VASE (J.A. Woolam Co, Inc.). Appending the IR reflec-
tivity data by the R(ω), calculated from the SE VIS-UV
data, we obtained the reflectivity spectra in the spectral
range 0.01–6.5 eV (see Fig. 2).
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Fig. 2. The experimental reflectivity R(ω) spectra
(dots) and extrapolations by the standard high-
-frequency asymptote Rhf(ω) = c/ω4 (dotted curves)
and by the anchor-window determined asymptote
(dashed curves). Insets present the experimental optical
conductivity σ(ω) spectra (dots) and the KK-deduced
σKK(ω) spectra (dotted and dashed curves). Shaded
areas in insets indicate the anchor-window.

3. Algorithm of the anchor-window technique

In metallic compounds, the low- and high-frequency
reflectivity asymptotes, required for the Kramers–Kronig
analysis, are usually approximated by the relations

Rlf(ω) = 1− c
√

ω , Rhf(ω) =
c

ω4
. (1)

Here the low-frequency asymptote Rlf(ω) corresponds to
the Hagen–Rubens law and the high-frequency asymp-
tote Rhf(ω) corresponds to a generic frequency depen-
dence, which settles down at photon energies exceed-
ing characteristic energies of a system under investiga-
tion. Making use the R(ω) extrapolations (1) and of the
Kramers–Kronig relation

θ(ω) = −ω

π
P

∫ ∞

0

dω′
ln R(ω′)
ω′2 − ω2

, (2)

one can calculate the phase factor θ(ω) of the complex re-
flection amplitude r(ω) = |r(ω)| exp(iθ(ω)). Then, mak-
ing use of the relation r(ω) = [ε1/2(ω)− 1]/[ε1/2(ω) + 1],
one can determine the dielectric function and the optical

Fig. 3. Experimental optical conductivity σ(ω) spec-
tra (dots) and the σ(ω) spectra deduced by the
Kramers–Kronig analysis (curves).

conductivity. Results of the calculations are presented in
insets to Fig. 2 by dotted curves. As seen, the optical
conductivity σKK(ω), deduced by the Kramers–Kronig
analysis, essentially differs from experimental σ(ω) spec-
tra, presented by dots in Fig. 2 insets.

There are various techniques to improve an accuracy
of the KK analysis [2]. We suggest an anchor-window
technique, which is a modification of the anchor-point
method [3]. The high-frequency asymptote is modelled
by the inverse polynomial

Rhf(ω) =
[
b0 + b1ω + b2ω

2 + b3ω
3 + b4ω

4
]−1

, (3)
the coefficients bi of which are determined by minimizing
differences between the KK-deduced optical conductiv-
ity and the experimental σ(ω) values, known in a narrow
spectral region — the anchor-window. The error func-
tion was chosen in the form

χ =
1
N

N∑
n=1

∣∣∣∣
σKK[n]− σexper[n]

σexper[n]

∣∣∣∣
2

, (4)

where σexper[n] is the experimental optical conductiv-
ity value at the spectral point n, which belongs to the
anchor-window, σKK[n] is the KK-deduced value, and N
is the number of points within the anchor-window. The
low-frequency asymptote of the reflectivity spectrum was
approximated by the relation
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Rlf(ω) = 1− a1

√
ω − a2ω . (5)

The a1 and a2 coefficients were determined by the least-
-squares technique, minimizing the error function

χ =
1
N

N∑
n=1

∣∣Rlf [n]−Rexper[n]
∣∣2,

where N = 5–10 is the number of the first several spectral
points of an experimental reflectivity spectrum.

The high-frequency asymptote Rhf(ω) and the optical
conductivity spectrum σKK(ω), deduced by the anchor-
-window technique, are presented by dashed curves in
Fig. 2. As seen, the anchor-window technique essentially
improves an accuracy of the Kramers–Kronig analysis.

To check a reliability of the anchor-window tech-
nique, we measured the IR optical conductivity of fci-
-ZnMgRE quasicrystals by the spectroscopic ellipsometry
technique. The measurements were carried out by a ro-
tating compensator Fourier-transform ellipsometer IRSE
(J.A. Woolam Co, Inc.). Results are presented by en-
larged dots in Fig. 3. As seen, the KK-deduced optical

conductivity values in the IR spectral range are close to
the actual ones. This justifies a reliability of the sug-
gested anchor-window technique.
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