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Maximum Entropy Method in Mössbauer Spectroscopy —
a Problem of Magnetic Texture
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A reconstruction of the three dimensional distribution of the hyperfine magnetic field, isomer shift and
texture parameter z from the Mössbauer spectra by the maximum entropy method is presented. The method was
tested on the simulated spectrum consisting of two Gaussian hyperfine field distributions with different values
of the texture parameters. It is shown that proper prior has to be chosen in order to arrive at the physically
meaningful results.
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1. Introduction

The analysis of the hyperfine parameter distribution in
the Mössbauer spectroscopy have a long history. The first
algorithms for the deconvolution problem was published
by Varret et al. [1] with later modification by Hesse
Rübartsch [2] and Window [3]. The method presented
in [1, 2] uses a matrix formulation for reconstruction
of weight function P (x) (x — hyperfine parameter).
In [3] an expansion of the distribution in the basis of
the trigonometric functions was formulated. The prob-
lem of both methods are some mathematical artefacts
which lead to unphysical oscillations in the calculated dis-
tributions from noisy Mössbauer spectra. On the other
hand, deficiency of these methods consist in the neces-
sity of postulating of some correlations between hyper-
fine parameters, for example linear dependence of hy-
perfine magnetic filed and the isomer shift. A different
approach is to find P (x) distribution of single parameter
by the maximum entropy method presented by Brandt
and Le Caer [4].

The maximum entropy method (MEM) stems from
the Bayesian logic [5] was already used to analyze many
spectroscopic data [6, 7, 8]. This model-free method
was not frequently used to the analysis the Mössbauer
spectra where presence of the distributions of hyper-
fine field parameters makes the spectra complicated and
interpretation becomes dependent on assumptions one
makes in order to get the hyperfine fields distributions.
The one dimensional Mössbauer spectra contain infor-
mation on the hyperfine magnetic fields (B), isomer
shift (IS), qudrupole splitting (QS), and orientation of
the hyperfine magnetic field with respect to gamma beam
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direction through magnetic texture parameter z defined
as:

z =
I2,5

I1,6
=

3 sin2 θ
9
4

(
1 + cos2 θ

) , (1)

where θ is an angle between direction of gamma ray and
local hyperfine magnetic field. It was shown recently
that two dimensional distribution in (B, IS) space [9]
and three dimensional distribution in (B, IS, QS) [10]
space can be reconstructed from Mössbauer spectra by
the MEM technique in the first order approximation ap-
proach, where the quadrupole interaction is considered
as a small parameter. The problem not discussed in [9,
10] is reconstruction of the hyperfine field distribution for
not very thin samples for which there is nonlinear depen-
dence of the intensities of Mössbauer lines and the thick-
ness parameter. This can lead to artifacts in the recon-
structed distribution. The method of extraction of cross
section from the Mössbauer spectra using MEM is de-
scribed in [11]. In specific problems, where a spatial ar-
rangement of the hyperfine magnetic field depends on the
field B, one needs to make reconstruction of the P(B, IS,
z) distribution. The aim of this work is to test whether
such reconstruction by MEM is feasible in the first order
perturbation approach.

2. Maximum entropy method

In the application of maximum entropy method to
the analysis of the Mössbauer spectra we divide whole
3-dimensional space into pixels and the value ρj denotes
the probability of having given values of the chosen three
parameters within j’th pixel. Because the line intensi-
ties are linear in probability, the intensities Wk mea-
sured with uncertainties σk at k’th velocity channel are
described theoretically by a sum:

(78)
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Wk =
Npix∑

j=1

rkjρj , (2)

where rk,j is the transformation matrix.
As usual one is maximizing the Lagrangian

L = αS − 1
2
χ2, (3)

where S is the information entropy described as:

S = −
Npix∑

J=1

ρj ln
( ρj

ρoj

)
, (4)

where ρj and ρoj are reconstructed and initial (prior)
distributions.

The final equations to solve are of type:

ρj =
ρoj exp

(
− 1

2α
∂χ2

∂ρj

)

Npix∑
j′=1

ρoj′ exp
(
− 1

2α
∂χ2

∂ρj′

) . (5)

In practical applications one encounters a problem with
choosing prior as this choice can influence the response
of the MEM procedure.

3. Results and discussion

In order to test the possibility of the reconstruction of
P(B, IS, z) using maximum entropy method, the simu-
lated spectrum in thin absorber approximation approach
shown in Fig. 1a was used. The spectrum consists of two
sextets with Voigt line shapes with hyperfine parameters,
(B, σB , IS, QS, z), equal to (30 T, 3 T, 0 mm/s, 0 mm/s,
2) (20 T, 4 T, 0 mm/s, 0 mm/s, 1). The integrated
intensities of both sextets were assumed to be equal. As-
sumed hyperfine field distribution is shown in the inset
of Fig. 1a. The Gaussian noise on the level of 1% of ef-
fective absorption was added to the simulated spectrum.
Assumed behavior of z(B) is shown in Fig. 1b. One can
should point out that the reconstruction of such simu-
lated spectrum presents one of the most difficult tasks
because the lines no 1, 2 and 5, 6 of low field compo-
nent are located in the positions of lines no. 2 and 5 of
the high field component. One can thus expect a strong
correlations between reconstructed texture parameters of
both components.

Fig. 1. a) The simulated Mössbauer spectrum and
b) its z(B) function. The hyperfine magnetic field dis-
tribution is shown as a inset.

At first, flat initial prior was assumed. It means that
the response of MEM to the complete lack of knowledge
of the distribution was tested. The results of MEM pro-
cedures are presented in Fig. 2a. As one can see the the-
oretical line fit well to the simulated spectrum. The re-
constructed marginal distribution P (B, IS) (see Fig. 2b)
shows two distinct maxima located at B ≈ 20 T and
30 T what qualitatively agree with assumption done in
simulated spectra. One notes that the distribution of IS
parameter, originally assumed to be delta-like, appeared
to be rather broad. This shows a degree of uncertainty
of this parameter hidden in the simulated spectrum, aris-
ing from correlations between reconstructed field B and
the isomer shift IS. On the other hand, such broad distri-
bution of IS reflects our state of knowledge on this param-
eter. Because of the inherent property of the Maximum
Entropy Method, a flat prior used in the IS reconstruc-
tion results in much broader distribution (Fig. 2b) than
those obtained with Gaussian prior (Fig. 3b). The shape
of the reconstructed marginal P (B) distribution (Fig. 2c)
is wider than the simulated one. Moreover, the low mag-
netic field component is moved towards lower values of B
(Fig. 2c). When behavior of z(B) (Fig. 2d) is concerned,
one notices that it is quantitatively clearly different than
the one used in simulation, yet it indicates that there
are different texture values for high magnetic fields than
for lower. In conclusion, one can say that the use of flat
prior results in good description of the Mössbauer spec-
trum but only in a qualitatively good reconstruction of
the simulated distribution of hyperfine parameters.

Fig. 2. a) The simulated Mössbauer spectrum (points)
and fitting line (solid line); b) marginal P (B, IS) distri-
bution; c) marginal P (B) distribution and d) z(B) are
obtained using flat prior. The solid lines in (c) and (d)
represents the results of simulation.

In the second step, the prior was assumed to be a su-
perposition of two broad Gaussian shapes (see Fig. 3a)
which follow from quick inspection of the simulated Möss-
bauer spectrum. The position of the spectroscopic lines
in the simulated spectrum shows beyond the doubts that
at least two components, one at about B ≈ 30 T and sec-
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ond somewhere in the central part of spectra, must char-
acterize the distribution of hyperfine parameters. The re-
sponse of MEM to the chosen prior is such presented in
Figs. 3b, 3c and 3d for P (B, IS), P (B) and z(B), re-
spectively. As it follows from inspection of these Figures,
this time the reconstructed distributions agree much bet-
ter with the simulated ones than previously. P (B) dis-
tribution differs from the assumed one a little only, and
the behavior of z(B) also fits better to the simulated
one, and shows existence of two magnetic configurations
of iron magnetic moments.

Fig. 3. a) The assumed prior distribution; b) marginal
P (B, IS) distribution; c) marginal P (B) distribution
and d) z(B). The solid lines in (c) and (d) represents
the results of simulation.

4. Conclusion

The results of our analysis show that even in very dif-
ficult case like the one analyzed in this paper, one can
obtain reliable distributions of the hyperfine parameters,
and obtain good indication concerning the magnetic mo-
ment configuration distribution in the considered sample.
The paper shows that the use of biased prior (flat one in
our case), i.e. much different from the one clearly evi-
dent from the observed spectrum, leads to distorted dis-

tributions with respect to the real ones. This paper also
strengthens conclusions drawn from similar analysis [11]
carried out for Fe-Ni Invar alloy for which a non-collinear
arrangement of magnetic moments was predicted theo-
retically. The results of this paper show that the MEM
can be used in situations where different magnetic mo-
ment arrangements of iron are expected. As a minimum,
a qualitative picture of the real P (B, IS, z) distributions
can be obtained and may serve as an excellent start-
ing point to the interpretation of complicated Mössbauer
spectra.
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