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This paper presents the problem of synthesis of signals modulated in frequency with autocorrelation function
that implements an optimal approximation to a given autocorrelation function. After theoretical introduction an
algorithm of frequency modulated signal synthesis is presented. Simulation results made in Matlab are presented
in the last section.
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1. Introduction

Nowadays radars are becoming increasingly common
and their applications are growing beyond closely mili-
tary applications. Their structure is also evolving vio-
lently. Most common radar waveform is the linear FM
(LFM) signal. Its utility is that it is fairly readily gener-
ated by a variety of technologies, and is easily processed
by a variety of techniques that ultimately implement
a matched filter, or nearly so. However, since a LFM
waveform has nearly rectangular power spectrum den-
sity (PSD), its autocorrelation function exhibits a sin x

x
function shape, with its attendant problematic side lobe
structure [1]. This enables a worldwide search of an algo-
rithm that would enable synthesis of signals that would
have desired properties. One of the most promising group
of signals are signals modulated in frequency with non-
linear frequency modulation function (NLFM). Such a
frequency modulation function can shape the autocor-
relation function (by shaping power spectrum) to have
much lower side lobes than LFM signal would have. As
a result there is no need to apply window functions to
reduce autocorrelation function side lobe levels. There
are two main constraints imposed on the NLFM signal:

• it must be easy to produce,

• it must be easy to process at the receiver.
With the progress of modern technology these points

are becoming easier to meet, especially thanks to the
progress in high speed analog to digital converters and
progress in field programmable gate arrays (FPGA). This
suggests that generation of more complex signals is be-
coming possible.

Why is the autocorrelation function so important in
radar applications? Autocorrelation function is a reac-
tion of the receiving system (optimum in scope of signal

∗ corresponding author; e-mail:
marcin.szugajew@wel.wat.edu.pl

to noise ratio minimization) to the signal reflected from
the target [2–4]. In case of distance measurement it de-
scribes accuracy and resolution of such measurements.
Matched filter is a solution to the problem of optimum
filtration in scope of signal to noise ratio minimalization.
Signal on the exit of such filter is proportional to the au-
tocorrelation function i.e.

s(t) = AR(τ) ,

where A — proportionality coefficient, R(τ) — autocor-
relation function.

One can see that selection of the signal is a very im-
portant issue. One would want to have a signal of whom
the autocorrelation function R(τ) would be “similar” to
certain “perfect” Ropt(τ) in sense of criterion that would
provide desirable property or properties. In signal syn-
thesis there are two possibilities for above mentioned cri-
terion f : min-max or square criterion of similarity. In
this paper we will be using the latter one

f =
∫ ∞

−∞
[|Ropt(τ)| − |R(τ)|]2 dτ . (1)

In addition we assume that the energy spectrum G(ω) of
the signal s(t),

G(ω) = 0 for |ω| > Ω (2)
is non-zero in finite range of frequencies.

Autocorrelation function does not determine signal
s(t) in explicit way, it only determines signals amplitude
spectrum

R(τ) =
1
2π

∫ ∞

−∞
|S(ω)|2 e jωτ dω , (3)

|S(ω)|2 =
∫ ∞

−∞
R(τ)e− jωτ dτ , (4)

where |S(ω)| — amplitude spectrum.
From the following one can see that any signal with

given amplitude spectrum and random phase spectrum
can have the desired autocorrelation function.

In the next section of this paper the problem of synthe-
sis of signals modulated in frequency with autocorrelation
function that implements an optimal approximation to a
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given autocorrelation function will be presented. In the
last section simulation results will be shown.

2. Signal synthesis algorithm

In this part of the article essential parts of the signal
synthesis algorithm are presented.

The synthesis of optimum signal xopt is equivalent to
determination of shortest distance d(x, y), in sense of
square criterion, between the X and Y sets, i.e.

dmin = min
x∈X

d(x, y) . (5)

Square criterion specifies a rule according to which to
each pair of functions x and y distance d(x, y) is assigned
to. The distance d(x, y) is often called a function space
metric and should not be interpreted as the geometric
distance [5, 6] (Fig. 1).

Fig. 1. Geometrical interpretation of signal synthesis
task.

There are several ways to solve the problem of signal
synthesis, i.e., finding a signal x with lowest value of dis-
tance dmin. In the following part of the article one of
them will be discussed.

In the first step one chooses facultative signal x ∈ X
and determines the best approximation on Y set of sig-
nals. The quality of approximation is characterized by a
distance expressed by the following:

d(x, Y ) = min
y∈Y

d(x, y) = ‖x− y‖ , (6)

where ‖ · ‖ — norm of the signal.
This distance corresponds to a specific signal y1

(Fig. 1). If the signal does not have the desired prop-
erties, the signal x is changed (moving inside set X), and
the distance d(x, y) is determined again. Successive dis-
tances values should form a decreasing sequence

d1 > d2 > d3 > . . .
This operation is repeated until the minimum of (6)

is achieved. It should be noted that X is a set of sig-
nals that are characterized by an autocorrelation func-
tion R(τ) and Y is the set of signals that possesses the
desired autocorrelation function.

Based on the above method a numerical procedure of
designing the time–frequency structure of signals modu-
lated in frequency with desired autocorrelation function
was developed. In the following parts of this article es-
sential elements of this method are presented.

The task of signal synthesis is to synthesize the fre-
quency modulation function ωc(t) that realizes the best
approximation to the desired signal y(t). Suppose that
elements of set of possible signals X are given as

x(t) = B(t)e jϕ(t) for |t| ≤ T

2
, (7)

where T — duration of the pulse, B(t) — signal envelope,
ϕ(t) — phase modulation function.

Spectrum of signal x(t):
X̃(ω) = bx(ω)e− jβx(ω), (8)

where bx(ω) — amplitude spectrum, βx(ω) — phase
spectrum.

In the process of synthesis, it is assumed that the en-
velope of signal (B(t)) is set, and the function ϕ(t) is
arbitrary. Frequency modulation function is expressed
as follows:

ωc(t) =
dϕ(t)

dt
. (9)

Elements of Y have the following form:
y(t) = A(t)e jΦ(t), (10)

and their spectra
ỹ(ω) = a(ω)e jα(ω), (11)

where A(t) — envelope of signal y(t), Φ(t) — phase func-
tion of signal y(t), α(ω) — phase spectrum of signal ỹ(ω),
a(ω) — amplitude spectrum of signal ỹ(ω).

Signals x(t) ∈ X differ only in the form of phase mod-
ulation function ϕ(t), with given envelope a(ω). With
given functions a(ω) and B(t) one synthesizes phase mod-
ulation function ϕ(t) (or βx(ω)), which minimizes the
distance between X and Y sets [2]. This means that one
must determine the similarity coefficient

C(x, Y ) =
1
2π

∫ ∞

−∞
a(ω)bx(ω)dω = max , (12)

where

bx(ω) = |x̃(ω)| =
∣∣∣∣
∫

B(t)e j [ϕ(t)−ωt]dt

∣∣∣∣ . (13)

Optimal frequency modulation function, which maxi-
mizes the above similarity coefficient shall be determined
on the basis of the differential equation

B2(t)dt =
1
2π

a2 (ωc) dωc . (14)

After determining the frequency modulation function
ωc(t) from the above equation, in the next step the phase
modulation function is determined as

ϕ(t) =
∫

ωc(t)dt . (15)

In order to determine the phase spectrum of signal x(t)
one must resolve the integral

X̃(ω) =
∫ T/2

−T/2

B(ω)e j [ϕ(t)−ωt]dt . (16)

Using the method of stationary phase [2] one obtains
a solution of the form

βx(ω) = −
[
ϕ(t)− ωt0 ± π

4

]
, (17)

where t0 — point of stationary phase.
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Fig. 2. Signal synthesis algorithm.

In the next step, from the above equation phase spec-
trum βx(ω) should be determined, which is then mapped
to a specified amplitude spectrum a(ω), in order to ob-
tain signal y(t) closest to the signal x(t):

ỹ0(ω) = a(ω)e jβx(ω). (18)
The determined spectrum βx(ω) is both phase spec-

trum of signal xopt(t) and signal y0(t). Signal y0(t) is
obtained by taking the inverse Fourier transform from
signal ỹ0(ω). At this stage, namely after determination
of signal xopt(t), signal synthesis could be ended, but the
results will be affected by the error introduced by the
used stationary phase method. In order to reduce them
an iterative method was constructed.

The essential steps of signal synthesis algorithm are
presented in graphical manner in Fig. 2.

3. Simulation results

Algorithm presented in the previous chapter was
implemented using Matlab. Firstly, correctness of
operation was checked by synthesis of LFM signal with
rectangular amplitude spectrum, given by

a(ω) =

{
1/

√
π/ω for − Ω ≤ ω ≤ Ω ,

0 for |ω| > Ω .
(19)

Secondly, NLFM signal was synthesized. Amplitude
spectrum of this signal is given by

a(ω) =
√

π

Ω

(
1 + g cos

(
π

ω

Ω

))

for − Ω < ω < Ω . (20)
Envelope of both synthesized signals was rectangular

B(t) =

{
1/
√

T for − T/2 ≤ t ≤ T/2,

0 for |t > T/2|.

Frequency modulation functions for the both LFM and
NLFM signals (the solution of the differential Eq. (14)),
are presented graphically in Figs. 3 and 4.

Fig. 3. Frequency modulation function, LFM signal.

Fig. 4. Frequency modulation function, NLFM signal
(g = 0.5).

Amplitude spectra of synthesized signals are presented
graphically in Figs. 5 and 6.

In the second experiment parameter g from Eq. (20)
was changed from value zero to 0.995. With this param-
eter one can adjust the autocorrelation function by ad-
justing “nonlinearity” of frequency modulation function.
The change in the frequency modulation function can be
seen in Figs. 7 and 8 where the parameter g was changed
from value 0.2 to 0.995.

As mentioned in the previous paragraph additional al-
gorithm for reducing errors introduced by the station-



The Numerical Synthesis of a Radar Signal . . . 1197

Fig. 5. Amplitude spectrum of the synthesized signal
(LFM).

Fig. 6. Amplitude spectrum of the synthesized signal
(g = 0.5).

Fig. 7. Frequency modulation function, NLFM signal
(g = 0.2).

Fig. 8. Frequency modulation function, NLFM signal
(g = 0.995).

ary phase method used for solving integral (16) was con-
structed. Result of our work can be seen in Figs. 9, 10
and 11. In Fig. 9 autocorelation function of zero approx-
imation was plotted. In Fig. 10 the same autocorrelation
function was plotted, but after going through one itera-
tion of second algorithm.

Fig. 9. Autocorelation function of the NLFM signal
zero approximation (g = 0.2).

Fig. 10. Autocorelation function of the NLFM signal
after first iteration (g = 0.2).

Fig. 11. Amplitude spectrum of the synthesized LFM
signal zero approximation (solid) and 30th iteration
(dash).

As one can see, the first side lobe of autocorelation
function was reduced by 3 dB. The amount of decrease
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is small when the product bandwidth times pulse dura-
tion is big and gets larger when this product is small.
This is because the stationary phase method is less acu-
rate when the product bandwidth times pulse duration is
small. The second reason of such behavior is that when
the change in power spectrum is big (it can be especially
seen in the LFM signal whose ideal power spectrum is
rectangular) used equations are subject to error. When
the change in PSD is smooth the error is small.

In Fig. 11 amplitude spectra of synthesized LFM sig-
nals are plotted. Curve one is the zero approximation
spectrum and curve two is after thirty iterations of sec-
ond algorithm. As one can see, amplitude spectrum is
near to the optimal impossible to meet rectangular am-
plitude spectrum.

In Fig. 12 one can see the change in autocorrelation
functions first side lobe level in function of g parameter.

Fig. 12. Change of autocorrelation functions first side
lobe level with the change of parameter g.

From this figure it can be seen that side lobe level
decreases as g parameter is increased. This decrease ends
when g parameter reaches 0.5 value after which side lobe
level starts to increase. This rises a separate problem of
selection of the optimal frequency modulation function
(power spectrum) in order to achieve the desired side lobe
level of the autocorrelation function with determined
width of the main lobe. This problem is being addressed.

4. Conclusion

This article discusses key aspects of signal synthesis
needed for the selection of signals with desired autocor-
relation function, for example in radar technology. Re-
sults of previous studies as theoretical and numerical re-
sults confirm the usefulness of the method discussed in
the article from the standpoint of signal optimization.
This method is useful for cases where the desired au-
tocorrelation function and the subsequent results of the
calculations cannot be represented in the strict analytical
form. Nevertheless presented algorithm allows numerical
methods to find the optimal solution, having at the en-
trance only a discrete set of signal points. The next step
is to find a power spectrum that would give a possibility
of selection of width of main lobe of the autocorrelation
function with lowest possible side lobe levels. In general,
this power spectrum can be impossible to achieve. Signal
closest to such a power spectrum can be synthesized by
presented algorithms.
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