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The key elements in cancer diagnostics are the early identification and estimation of the tumor growth and
its spread in order to determine the area to be operated on. The aim of our study was to develop new methods
of analyzing autofluorescence images which will allow us an objective and accurate assessment of the location
of a tumor and will also be helpful in determining the advancement of the disease. The proposed classification
methods are based on neural network algorithms. An Olympus company endoscopic system was used for an
autofluorescence intestine imaging study. The autofluorescence imaging analysis process can be divided into
several main stages. The first step is preparation of a training data set. The second one involves selection of
feature space, namely the selection of those features which enable distinguishing the pathologically altered areas
from the healthy ones. Final stages of the analysis include pathologically changed tissue classification and diagnosis.

PACS numbers: 87.57.−s, 87.57.R−, 87.57.nm, 87.19.xu, 87.19.xj

1. Introduction

Studies on the use of autofluorescence images for early
detection of tumor tissues were presented in the early
1990s. In 1991, Palcić was one of the first to apply flu-
orescence imaging in the lung imaging fluorescent endo-
scope (LIFE) system [1]. Lam has demonstrated other
successful tests in his works in 1993 and 1998 [2, 3]. The
results were confirmed using fluorescence imaging to be
five times as effective in lesion detection (such as dyspla-
sia and carcinoma in situ) as using images obtained with
conventional white light illumination. In the work [4] the
authors have presented one of the first cancerous change
early detection system based on a digital analysis of flu-
orescence images. It was observed that in autofluores-
cence images lesions were characterized by clearly red
color while green blue areas corresponded to healthy tis-
sues. Based on that, the authors proposed a fluorescence
image red and green constituent analysis. During that
process the system generated a matrix of red to green as-
pect ratio values. In the cases where the ratio exceeded
“1” the area was classified as pathologically changed.

In 2005, Kara and associates compared the LIFE sys-
tem to new generation videoendoscopes, and they drew
attention to significant limitations of the LIFE system.
The authors argue that it is impossible to define precan-
cerous changes, such as the Barret esophagus neoplasia,
using the LIFE system [5, 6]. The reason for that is that
the LIFE system only detects green (480–520 nm) and
red (> 630 nm) ratio spectra in autofluorescence endo-

scope images. As a result, various types of inflammation,
in which blood flow levels are higher than in healthy tis-
sues, are interpreted by the LIFE system as tumor. It is a
result of hemoglobin’s high absorption coefficient for ra-
diation in 500 nm range. The Olympus company has pre-
sented a solution to this problem [6]. The source of radi-
ation in the AFI videoendoscope is a 300 W xenon lamp,
and two high resolution CCD detectors. What is inno-
vative in the Olympus system is the method of creating
autofluorescence images. A set of filters allows a sequen-
tial tissue illumination with blue spectrum (395–475 nm)
and green spectrum (540–560 nm) radiation every 1/20 s,
however, a spectrum filter mounted on the CCD guaran-
tees detection of 490–625 nm spectrum radiation only.
The autofluorescence image consists of two basic com-
ponents: a tissue fluorescence image and an image of
green radiation reflected from the tissue. By adding the
information about the reflected radiation to an autoflu-
orescence image we are able to distinguish precancerous
states (the Barret esophagus neoplasia) and tumors from
a local, harmless inflammation [5–9].

Figure 1 shows images of an intestine lesion (polyp).
In the case of imaging in white light (1A) separating the
lesion from healthy tissue is very difficult, while in the
autofluorescence image (1B) the pathologically changed
tissue is characterized by clearly different staining, which
makes it significantly easier to locate.

The aim of our study has been the developing of new
methods of endoscopic autofluorescence image analysis
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Fig. 1. Intestine lesion: (A) a standard endoscope im-
age in white light, (B) an autofluorescence image.

which allow an objective and accurate tumor location
assessment, and will help in determining the disease
progress degree. The proposed classification methods are
based on neural algorithms. In this paper, the objects of
classification are autofluorescence images of human in-
testine. The images have been taken with an Olympus
endoscope set at the Wrocław Medical University.

2. Materials and methods

The autofluorescence images have been taken during
routine colonoscopy and gastroscopy examinations in the
Wrocław Medical University. Twenty-five images show-
ing pathological intestinal changes in eleven patients have
been chosen from among dozens of recordings. The set of
images was divided into two groups: twelve images were
used to develop a training set, whereas the remaining
thirteen were used to create a testing set. Since in the
presented method the classified element is the pixel, over
5000 pixels have been selected from the images chosen
for the training set and over 3000 pixels — for the test-
ing set. The training set creation process is presented in
Sect. 2.1.

Autofluorescence image analysis process can be divided
into several stages. The first stage consists of preparing a
set of training data. The second stage includes construc-
tion of feature space, namely a choice of those features
that allow the most effective distinguishing pathologically
changed areas from healthy tissues. A classification and
diagnosis of tested tissue follow in the last stages of the
analysis.

2.1. Training set

A training set has been created based on a dozen auto-
fluorescence images depicting precancerous and cancer-
ous tissues. Elements of a training set can be described
as follows:

U = {〈xk, ik〉, k = 1, 2, 3 . . . N}. (2.1)
Elements of set “U ” can be called examples. Each exam-
ple consists of full information about the given object’s
features vector xk as well as the information on the class
number the object is placed in. The training set consists
of four tables of equal dimensions. Table elements of the
same indices characterize one pixel.

The first table contains values proportional to red in-
tensity, the second table — the values proportional to

green intensity, the third one — proportional to blue in-
tensity, and the fourth table contains the information
about the type of tissue a given pixel represents. In
this paper, pixel classification into two or three groups
has been assumed. When divided into two groups, pix-
els were classified as pathological area or healthy area.
When divided into three groups, the classification in-
volved the creation of an additional “undefined” class,
which grouped the objects a decision cannot be unequiv-
ocally made about (reflections, shadows). Figure 2 shows
the principle of creating a set of training data.

Fig. 2. Procedure of creating a training set.

2.2. Feature selection and extraction

An assessment of features needed to achieve the task’s
usefulness can be made without the need of conducting
a full recognition procedure, and can be based just on
an analysis of sample distribution that corresponds to
different classes in the training set. The further from
each other the average values calculated from the sam-
ples (pixels) of different classes and the lower standard
deviations within these classes, the easier the task of clas-
sification will be. If we take under consideration each
feature separately, then we deal with a univariate analy-
sis of variance (anova). A discriminant analysis has been
proposed in this paper as a method of feature selection,
which can easily be reformulated into multivariate anal-
ysis of variance (manova) [10–12]. A 6-element feature
vector has been generated on the basis of the training
set data. The vector consists of values proportional to
the intensity of red (R), green (G), blue (B) and compo-
nent values of the spatial model HSV — hue (H), satu-
ration (S) and value (V). The essence of feature selection
by means of discriminant analysis is defining canonical
discriminant functions separating our groups. A general
form of linear discriminant function has been presented
below [12, 13]:

Dkj = β0 + β1x1kj + . . . + βpxpkj , (2.2)
where p — number of discriminant variables, N — num-
ber of elements, G — number of groups, Dkj — the value
of canonical discriminant function for k — the case of the
j-th group, k = 1, . . . , N , and j = 1, . . . , G, Xikj — the i
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value of the discriminant variable for k — the case in j-th
group, βi — canonical discriminant function coefficients.

Calculating the coefficients of discriminant function is
achieved by solving the following equation:

(B − λW )β = 0 (2.3)
where B — between group sum of squares, W — within
group sum of squares, β — the vector of canonical dis-
criminant function coefficients, λ — eigenvalue.

The eigenvalues and eigenvectors are determined based
on the above mentioned dependence. Eigenvalues and
corresponding vectors are sorted according to the depen-
dence λ1 > λ2 > . . . > λp. In case of the division into
three groups only two of the biggest values and their cor-
responding vectors are considered. Vector elements are
canonical discriminant function coefficients. The next
step is to standardize coefficients, then calculate struc-
ture matrix elements. The standardization of discrim-
inant function coefficients is achieved according to the
following formula:

β∧p = βp

√
W

N − g
, (2.4)

where β∧p — standardized discriminant function coeffi-
cient, βp — non-standardized discriminant function co-
efficient, W —within group sum of squares, N —number
of elements (samples), g — number of groups (p = 3), p
— number of discriminatory variables (p = 6).

The structure matrix of correlations between predic-
tors and discriminant function, S, is found by multiply-
ing the matrix of within-group correlations among predic-
tors, rik, by a matrix of standardized discriminant func-
tion coefficient β∧p (standardized using pooled within-
-group standard deviations) [13]:

Sp = β∧p rik , (2.5)
where Sp — the structure matrix, β∧p — standardized
discriminant function coefficient, rik — within group cor-
relations.

Standardized discriminant function coefficients indi-
cate how strong a given discriminant variable’s impact is
on differentiating groups. The higher its value, the bigger
the discriminatory impact of the variable. Structure ma-
trix coefficients contribute additional information. They
show the strength of interdependence between discrim-
inatory variables and functions. If the coefficient value
is close to −1 or 1, it means that all the information
about the discriminant function is included in the vari-
able. Structure coefficients are widely used to interpret
the discriminant function because they are correlations
between variables and discriminant function.

By analyzing the coefficients calculated on the basis of
picture sets of autofluorescence endoscopy of intestines,
we can state that red (R), green (G) color values and
value (V) largely contribute to group discrimination.

The result of the discriminant analysis presented above
is a reduction of the feature space to three dimensions.
Figure 3 shows a feature space as well as a distribution of
training set data in the 3-class division. Only two dimen-

Fig. 3. Two-dimensional feature space.

sions of feature space have been shown for a transparent
demonstration.

2.3. Classification

A feed-forward network with the Levenberg–
Marquardt algorithm has been designed for the
classification of endoscopic human tissue images. The
network consisted of three neurons in the input layer and
one neuron in the output layer in the case of dividing
images into two classes, and two neurons in the output
layer in the case of dividing images into three classes.
Additionally, there are two hidden layers. Sigmoid
activation function has been applied in the cases of all
neurons.

The process of classification can be divided into three
stages: training the network, testing the network, im-
ages classification. The training set consisted of more
than 5000 pixels chosen from among 12 images depicting
tissues of five different patients. Each example (pixel) in
the learning set consisted of information on its character-
istics, i.e. R, G, V components as well as the information
on whether the pixel represents the “pathological class”
or the “healthy class”, or, in the case of a division to three
classes, the “pathological class”, the “healthy class”, or the
“undefined class”. Applying the Levenberg–Marquardt
algorithm makes all the weight of the network update
simultaneously, which results in significant reduction of
training time even with large numbers of training sets
[12, 14]. The testing stage was performed on a set of 3000
pixels, which were prepared on the basis of randomly se-
lected images not involved in the training process. The
value of pixels classified incorrectly was 14%. Most of
them represented pathological areas.

The final stage is the classification process. Two vari-
ants of the classification have been assumed in this work,
i.e. classification into two groups and classification into
three groups. In the case of division into two classes, the
network recognizes a given object (pixel) as “patholog-
ical” when the output neuron activation level is higher
than 0.8. In the case of division to three classes, the net-
work recognizes a given object (pixel) as “pathological”
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when one output neuron activation level is higher than
0.8 and the other one is lower than 0.2.

The resolution of the analyzed image was 384×288 px,
which results in over 110 × 103 pixels tested. The time
needed for classification of a single frame did not ex-
ceed 0.1 s.

3. Results

As we have mentioned in Sect. 2.1, pixels were classified
into two or three classes. Endoscopic autofluorescence
images of pathologically changed intestine in a form of
polyp, and classification results are shown in Fig. 4. By
analyzing the results we can conclude that the patholog-
ical tissue is localized correctly. Unfortunately, in terms
of in vivo it is not possible to define a precise boundary
of the lesion, hence it is difficult to determine the extent
to which an area classified by the program as patholog-
ical corresponds to the actual area of the polyp. Major
difficulties in the classification of images are frequently
occurring reflections and remnants of faeces, which are
classified to the “pathological” group. A large part of
reflections also is very similar in color to pathological
changes, and using filters does not produce intended ef-
fects. A solution to this problem is to analyze the se-
quence of images.

Fig. 4. Autofluorescence image classification results:
(A), (B) autofluorescence images of intestine taken in 1 s
interval, (C), (D) the classification results of A and B
images, respectively.

Figure 4A depicts a large reflection marked with an
arrow that was classified as pathological area (Fig. 4C).
The reflection is no longer present in the image taken 1 s
later (Fig. 4B), however, the area classified as a polyp
only slightly changed its shape.

Fig. 5. Autofluorescence image classification results
(split into 3 classes): (A), (B) autofluorescence image
of intestine with the outlined place of polyp occurrence,
(C), (D) the classification results of A and B images,
respectively.

Classification into three groups was performed at the
next stage. As it was described in Sect. 2.1, areas where
it was hard to make a clear decision whether the tissue
was pathological or it was healthy were classified into
“undefined” group. The assumption was that this group
will also include pixels representing shadows as well as
those pixels which the filter cuts off as those representing
reflections. Figure 5 presents an image sequence taken
in 1 s interval. The red area in Fig. 5C and D corre-
sponds to the pixels classified as “pathological” group, the
green area — pixels classified as the “healthy” group and
the blue color denotes the areas classified as “undefined”.
By analyzing the results, we can conclude that despite
the very small and invisible lesion, the neural network
relatively accurately locates it. Also the “undefined” ar-
eas are classified correctly. Unfortunately, some of the
pixels that represented small reflections were classified
incorrectly as lesion.

4. Conclusions

The paper presents a new method of endoscopic gas-
trointestinal image analysis and classification. The
method is based on endoscopic fluorescence image pro-
cessing and classification. Images derived mainly from
the human intestine were used in the studies. By an-
alyzing the results, we can conclude that the proposed
method localizes even slightly visible lesions relatively
well. The value of pixels classified incorrectly did not
exceed 15%. Unfortunately, at this stage of the research
we cannot determine the method’s degree of precision in
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defining the pathologically changed areas, because histo-
logical examination of the samples does not define the
pathological areas with such a high accuracy. The pre-
sented method appears, however, to be useful as a sup-
porting method, the so-called “red flag”, i.e. the doctor
performing an examination should pay special attention
to the areas indicated by the network as the “pathologi-
cal” changes.
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