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Determination of Electromagnetic Emitter Position from
Passive Radar Bearings as Linear Least Squares Problem
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Mathematical formulation of an inverse problem of radiolocation is discussed. Determination of electro-
magnetic emitter position from passive radar bearings is transformed into a linear least squares problem and
equivalent system of normal equations. Eventually spatial localisation of emitter is reduced to solving system of
linear algebraic equations with entries of coefficient matrix and free term depending on bearings in a nonlinear
way. Regularisation algorithm is proposed.

PACS numbers: 41.20.Jb, 03.50.De

1. Introduction

Objects in air space investigated by passive radars (i.e.
receiving signals only) can be mostly approximated well
as point electromagnetic emitters. Hence localisation of
such objects in three-dimensional space equipped with
Cartesian coordinates Oxyz can be reduced to finding a
position p = [x, y, z] of an object-representing point emit-
ter from bearings produced by a system of passive radar
stations. Let Oxy be plane approximating Earth surface
in operation area of a system of n (n > 1) radar stations
with fixed positions pi = [xi, yi, zi], i = 1, 2, . . . , n. In lo-
cal spherical coordinates (of origin in a station position)
a geometrical bearing from each station is registered as
azimuth ϑi (in Oxy plane) and elevation βi (perpendic-
ularly to Oxy plane) of radius connecting a station and
an investigated object, [x−xi, y− yi, z− zi], that relates
the unknown object position by two equations

x− xi

y − yi
= tan ϑi

and
z − zi√

(x− xi)2 + (y − yi)2
= tanβi , (1)

where −π < ϑi ≤ +π and − 1
2π ≤ βi ≤ + 1

2π are assumed
[1÷ 5]. The distance between a station and an emitter is
not measured in the radiolocation model considered here.

2. Formulation of problem

For each bearing (ϑi, βi) the system of Eqs. (1) can
be transformed into a system of equations linear with
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respect to unknown coordinates of emitter position, in
dependence of signs of values of trigonometric functions
involved

x− tanϑiy = xi − tan ϑiyi

and
− tanβiy + cos ϑiz = − tan βiyi + cos ϑizi ,

for (|ϑi| ≤ 1
4π or |ϑi| ≥ 3

4π) and |βi| ≤ 1
4π,

x− tanϑiy = xi − tan ϑiyi

and
y − cos ϑi cot βiz = yi − cosϑi cot βizi ,

for (|ϑi| ≤ 1
4π or |ϑi| ≥ 3

4π) and 1
4π < |βi| ≤ 1

2π;
− cot ϑix + y = − cot ϑixi + yi

and
− tanβix + sin ϑiz = − tan βixi + sin ϑizi ,

for 1
4π < |ϑi| < 3

4π and |βi| ≤ 1
4π;

− cot ϑix + y = − cot ϑixi + yi

and
x− sinϑi cot βiz = xi − sin ϑi cot βizi ,

for 1
4π < |ϑi| < 3

4π and 1
4π < |βi| ≤ 1

2π. These equations
can be rewritten in the following equivalent matrix forms:

Aip = ai , Ai ≡
[

1 − tan ϑi 0
0 − tanβi cosϑi

]
,

ai ≡
[

xi − tan ϑiyi

− tan βiyi + cos ϑizi

]
, (2)

for (|ϑi| ≤ 1
4π or |ϑi| ≥ 3

4π) and |βi| ≤ 1
4π;
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Bip = bi , Bi ≡
[

1 − tanϑi 0
0 1 − cos ϑi cot βi

]
,

bi ≡
[

xi − tan ϑiyi

yi − cos ϑi cot βizi

]
, (3)

for (|ϑi| ≤ 1
4π or |ϑi| ≥ 3

4π) and 1
4π < |βi| ≤ 1

2π;

Cip = ci , Ci ≡
[
− cot ϑi 1 0
− tanβi 0 sin ϑi

]
,

ci ≡
[

− cot ϑixi + yi

− tan βixi + sin ϑizi

]
, (4)

for 1
4π < |ϑi| < 3

4π and |βi| ≤ 1
4π;

Dip = di , Di ≡
[
− cot ϑi 1 0

1 0 − sin ϑi cot βi

]
,

di ≡
[

− cot ϑixi + yi

xi − sin ϑi cot βizi

]
, (5)

for 1
4π < |ϑi| < 3

4π and 1
4π < |βi| ≤ 1

2π.
All elements of coefficient matrices of these systems of

linear algebraic equations are of modulus smaller than 1
which results in avoiding apparent singularity related
with tangent and cotangent functions of azimuth and el-
evation.

3. Method of solution and regularisation

If the number of radar stations is greater than one
(n > 1), then the relation between coordinates p of an in-
vestigated object (unknown) and bearings (known) with
respect to p takes the form of an overestimated system
of 2n linear algebraic equations with 3 unknowns

Ep = e , E ≡




E1

...
En


 , e ≡




e1

...
en


 , (6)

where each pair (Ei, ei) is of one of forms (2)–(5) and E,
e are block matrices. The number of equations is smaller
or larger than the number of unknowns for one bearing
or more than one bearings, respectively. Obviously, this
system is compatible and has unique solution for at least
two different bearings. For real bearings perturbed data
(Ẽi, ẽi), i = 1, 2, . . . , n, are given instead of the exact
ones (Ei, ei) and the system of inexact equations

Ẽp̃ = ẽ , Ẽ ≡




Ẽ1

...
Ẽn


 , ẽ ≡




ẽ1

...
ẽn


 (7)

is inconsistent in general for at least two different bear-
ings and undetermined for one bearing. Since only the
case when there exists a unique solution is interesting
in applications, the problem must be qualified as being
ill-posed. A natural way to overcome this drawback is
re-formulating it as a linear least squares problem

Ep ≈ e , (8)
and solving a corresponding inexact problem

Ẽp̃ ≈ ẽ . (9)
A linear least squares problem (8) is equivalent to a sys-
tem of normal equations [4]:(

Ẽ
T
Ẽ

)
p̃ = Ẽ

T
ẽ . (10)

Problems (9) and (10) have the same unique solution if
coefficient matrix Ẽ is of full rank, rank(Ẽ) = 3 (which
implies that det(Ẽ

T
Ẽ) 6= 0 and system (10) is consistent

and determinate). For a system of at least two radar
stations (n > 1) this condition is held if bearings from
at least two different stations differ. This implies the
approximate condition for effective localisation: the dis-
tance from a station to limits of an observed area g, the
smallest distance between stations s, the smallest emitter
altitude determined at the area limit w and the bearing
error u (of azimuth or elevation, in radians) should sat-
isfy the inequalities s

g > u and w
g > u. System of linear

algebraic Eqs. (8), when being determinate, can be solved
using Gaussian elimination with partial or complete piv-
oting or better with using the Cholesky–Banachiewicz
decomposition of coefficient matrix Ẽ

T
Ẽ [5]. When the

fractions in these inequalities are close to u, the accuracy
of this algorithm can be improved via regularisation of
the problem [6, 7]: instead of (10) a system of equations(

Ẽ
T
Ẽ + αI

)
p̃ = Ẽ

T
ẽ (11)

with the regularisation parameter α > 0 (where I is the
unit matrix) is solved using the same algorithms. For
any data (Ẽ, ẽ) a coefficient matrix in (11) is symmetric
and positive-definite and there exists a unique solution
of (11). Regularisation parameter can be chosen accord-
ing to the discrepancy principle [5]:∥∥∥Ẽpα − ẽ

∥∥∥
2

= δ + η ‖pα‖2 , (12)

where p̃ = (Ẽ
T
Ẽ + αI)−1Ẽ

T
ẽ and δ, η are data error

estimates: ‖Ẽ−E‖F ≤ η, ‖ẽ− e‖2 ≤ δ in the Frobenius
matrix norm and Euclidean vector norm. If for all bear-
ings |ϑ̃i − ϑi| ≤ u and |β̃i − βi| ≤ u, then the errors are
bounded in the following way:

η ≤ ‖E‖F u, δ ≤ ‖e‖2 u (13)
and one can take η ≈ ‖Ẽ‖Fu, δ ≈ ‖ẽ‖2u as a good ap-
proximation. A system of Eqs. (11), (12) can be solved
by applying method of secants or the Newton method
to (12).

4. Conclusion

It was demonstrated that a problem of determining
a point electromagnetic emitter position from passive
radar bearing can be reduced to a system of linear alge-
braic equations and solved with using standard numerical
methods. In some cases the regularisation may be useful.
The appropriate algorithms were described.
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