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Coherence in multiple scattering is important as it applies to imaging and detection of object in multiple
scattering environments. These phenomena may also be used to investigate images of objects obscured by them.
The scattering observations using very rough surfaces can provide useful insight into their statistic as they lie
outside the range of validity of the standard theories. Recently, there has been growing interest in the phenomenon
of backscattering enhancement in the reflection of electromagnetic waves of mm wave range from both atmospheric
hydrometeors (rain, snow and precipitation) as well as very rough surfaces (including that of sea and terrain sea).
Strong backscattering enhancement of mm waves incident at different incident angles, both in the TE and TM
polarizations, was observed experimentally. In the paper a short description of specific techniques used for treating
image processing of strongly irregular media is shortly presented. An emphasis is placed on the phenomena of
interest in advanced polarimetric radar especially in mm wave range.

PACS numbers: 41.20.Jb, 03.50.De

1. Backscattering enhancement

Backscattering enhancement phenomena have been ob-
served for many years. It has been sometimes called the
“retroreflectance” or the “opposition effect”.

Recently, more quantitative experimental and theoret-
ical studies of the enhancement have been reported. Wat-
son in [1] noted that the backscattered intensity is twice
the intensity of the sum of incoherent multiple scatter-
ing and the first-order scattering. De Wolf in [2] showed
that the backscattered intensity from turbulence is pro-
portional to the fourth-order moment and approximately
twice the multiple scattered intensity.

It was explained in [3] that the enhanced peak is caused
by the constructive interference of two waves traversing
through the same particles in opposite directions. Physi-
cists have also recognized that the transport of electrons
in a strongly disordered material is governed by multiple
scattering and that multiple scattering leads to “weak An-
derson localization” caused by “coherent backscattering”.
It is then shown that both electron localization in dis-
ordered material and electromagnetic (EM) wave local-
ization in disordered materials are governed by coherent
backscattering (CB) which is caused by the constructive
interference of two waves traversing in opposite direc-
tions. One Il corresponds to the wave multiply scattered
through many particles, called the “ladder term”. The
other Ic corresponds to two waves traversing through the
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same particles in opposite directions. This is called the
“cyclical” or the “maximally crossed” term and has the
same magnitude as Il in the back direction, but dimin-
ishes away from the back direction (Fig. 1). The essence
of this division will be highlighted in Sect. 3.

Fig. 1. Schematic explanation of CB. The direct (solid
arrows) and reverse (dashed arrows) wave paths go
through the same group of N particles, but in opposite
directions.

Also two waves scattered off the sloped surface inter-
fere constructively in the back direction producing the
enhanced peak. The angular width is relatively broad
and approximately proportional to the slope (Fig. 2).

A simple picture of the scattering process leads to the
conclusion that the backscatter peak is caused by multi-
ple scatter paths. From Fig. 2 the scattering paths ABC
and CBA give scattered waves with a difference in phase
(k1 + k2) · d. This term is zero if k2 = −k1 which is
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Fig. 2. The geometry of the scattering process time
reversed partner CBA of the direct path ABC [4].

exactly the case for backscatter (see Sect. 3). Thus the
backscatter terms add coherently to give a factor of two
larger intensity in this direction than in other directions
which have incoherently added terms. The width of the
backscatter peak can also be estimated from this simple
model. The coherent term will give no contribution when
the scattered waves are essentially out of phase. The half
width of the peak is then found to be [4]:

θ1/2 ≈
λ

〈d〉 , d = |AC| . (1.1)

Another enhancement occurs when the root mean square
(rms) of the surface height is much smaller than a wave-
length, but the second medium supports a surface wave.
This occurs when an optical beam is scattered from a
slightly rough metallic surface. If the incident wave is
p-polarized (parallel to the plane of incidence) and the
dielectric constant of the second medium has a negative
real part, then a surface wave is excited on the surface
and two surface waves traversing on the surface in oppo-
site directions interfere constructively in the back direc-
tion, producing the enhancement [5].

2. Wave scattering from random media

Following [5] let us consider electromagnetic (EM)
beam propagating through turbulent air. The reflective
index n(r, t) of air varies randomly in space and time,
and therefore, the amplitude and the phase of the wave
also vary randomly in space and time.

Fig. 3. Scattering by random cloud of scatterers.

Suppose that a time-harmonic field with exp(− iωt) is
incident on the medium. If we take a component Ex,
of the field vector E, the scalar field u(r, t) = Ex, is a
random function of position r and time t. We write u as
follows:

u(r, t) = Re (U(r, t)) exp(− iωt) , (2.1)
where U(r, t) = A(r, t) exp(− iφ(r, t)) is called the com-

plex envelope and A and φ are the random functions.
Now we write U as the sum of the coherent field 〈U〉

and the fluctuating field Uf :
U(r, t) = 〈U(r, t)〉+ Uf(r, t) (2.2)

where 〈 〉 denotes the ensemble average.
In theoretical work, we normally consider the ensemble

average, but in practice, this can often be approximated
by its spatial or time average (ergodic principle).

The field U , neglecting the cross polarization, satisfies
the scalar wave equation[∇2 + k2(1 + ε1)

]
U = 0 , (2.3)

where the dielectric constant ε(r, t) = n2(r, t) is a ran-
dom function and

ε = 〈ε〉(1 + ε1) , k2 =
ω2

c2
〈ε〉 . (2.4)

ε1 is the fluctuation and is assumed to be small.
Let us first consider the coherent field 〈U〉. From (2.3),

we get
∇2〈U〉+ k2〈U〉+ k2 〈ε1U〉 = 0 . (2.5)

Let us note that ε1 and U are correlated. The effective
propagation constant K for the coherent field is defined
by

(∇2 + K2)〈U〉 = 0 . (2.6)

An approximate expression for K has been shown
by [6]:

K2 = k2εe = k2 + k3

∫ ∞

0

exp (ikr) sin kr 〈ε1ε2〉 dr ,

(2.7)
where 〈ε1ε2〉 = 〈ε1(r1)ε1(r2)〉 is the correlation func-
tion of ε1 and is a function of the separation distance
r = |r1 − r2|.

The imaginary part of K which represents the attenu-
ation is given by

Ki =
π2k2

2

∫ 2k

0

Φε(ks)ks dks , (2.8)

where Φε is the spectral density of the fluctuation ε1:

Φε(ks) =
1

(2π)3

∫
〈ε1ε2〉 exp(− iKs · r)dV . (2.9)

In (2.8), 2Ki is equal to the scattering cross-section
per unit volume of the random medium, representing the
power scattered by the randomness. Note that εe in (2.7)
is the effective dielectric constant of the random medium
and is, in general, complex even in a lossless medium.
The imaginary part represents the attenuation due to
scattering.

Let us next consider scattering by turbulent air
(Fig. 3). We start with the radar equation for the case
shown in Fig. 3. The received power Pr is given by

Pr = Pt
λ2

(4π)3

∫

Vc

GtGr

R2
1R

2
2

σbi exp (−τ1 − τ2) dV , (2.10)

where σbi is the bistatic scattering cross-section per unit
volume of the turbulence and is given by the spectral den-
sity Φε of the turbulence, and τ is the optical distance
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σbi = 2k4Φε(ks) , ks = 2k sin
(

θ

2

)
,

τ1 =
∫ R1

0

2KidR , (2.11)

Ki is given in (2.8).
Let us note that the transmitted and the scattered

waves attenuate through the turbulence with the atten-
uation constant of the coherent wave, and this process
is called the first-order scattering or the distorted Born
approximation. The cross-section σbi is proportional to
the spectral density at the turbulent eddy size l,

ks =
2π

l
= 2k sin

(
θ

2

)
(2.12)

representing the Bragg scattering. This simple expres-
sion (2.10) must be extended to include multiple scatter-
ing to explain backscattering enhancement. Even though
most of the studies are directed to wave propagation in
turbulence, similar techniques should be applicable to ul-
trasound scattering by tissues.

3. Diagrammatic analysis

Now, we present the way of backscattering evaluation
using an approximation of Bethe–Salpeter equation. We
will base on excellent formulation as given in [7, 8]. One
can write down the intensity Green function inside the
disordered medium by means of Feyman-type diagram as

By convention the upper line denotes the amplitude and
the lower line the complex conjugate amplitude. Dashed
lines indicate the correlated scatterers. Since we average
over the disorder, the number of scatterers runs from zero
to infinity in between two scatterers that are connected
with dashed lines from upper to lower line, for instance
in the third diagram of Eq. (3.1). We can account for
this at once by the use of the dressed Green function in
between those two scatterers.

In this way they obtain at the Bethe–Salpeter equation
in the diagrammatic form

where U is the so-called irreducible vertex. It is the in-
tensity equivalent of the self energy from the Dyson equa-
tion. Iterating the Bethe–Salpeter equation to yields,

〈gg∗〉 = GG∗ + GG∗KGG∗ (3.4)
which defines the reducible vertex K as

K = U + UGG∗K . (3.5)
In the weak-scattering regime all recurrent scattering

events can be neglected, and we only take into account
the first contribution to the irreducible vertex U ,

U = 〈L〉 ≡ 〈[TL]〉 (3.6)
where 〈L〉 is defined as the first diagram of Eq. (3.3). This

leads to diffuse transport of light through the medium.
However, in order to describe coherent backscattering of
light, we also need the so-called most crossed (or cycli-
cal) diagrams, describing the interference between time
reversed waves.

Restricting ourselves only to these components one can
approximate at the reducible vertex of two term sum

K = 〈L〉+ 〈C〉 ≡ 〈[TL]〉+ 〈[TC]〉 (3.7)
with 〈L〉 the sum of all ladder diagrams and 〈C〉 the sum
of the cyclical diagrams

Equation (3.9) reads in real spaces coordinates
〈L(r1, r2, r3, r4)〉

= n|t|2δ(r1 − r2)δ(r1 − r3)δ(r1 − r4)

+ n|t|2
∫

dr5 dr6G(r1, r5)G∗(r1, r5)

×〈L(r5, r6, r3, r4)〉 . (3.11)
Noting that the cyclical diagrams are quite similar to

the ladder diagrams, except that the complex conjugate
amplitude traverses the scattering sequence in reversed
order, we expect 〈L〉 and 〈C〉 to fulfil a similar equation,
if we separate out the single scattering contribution to
〈L〉. Hence, one can write for 〈L〉:

〈L(r1, r2, r3, r4)〉
= n|t|2δ(r1 − r2)δ(r1 − r3)δ(r1 − r4)

+F (r1, r3)δ(r1 − r2)δ(r3 − r4) . (3.12)
Inserting this equation in Eq. (3.11) one obtains an

integral formula for F (r1, r3):

F (r1, r3) = n2|t|4 |G(r1, r3)|2

+n|t|2
∫

dr′ |G(r1, r
′)|2 G∗(r′, r3) . (3.13)

The cyclical diagrams can then be summed to give
〈C(r1, r2, r3, r4)〉 = F (r1, r3)δ(r1 − r4)δ(r2 − r3) .

(3.14)
We only have to solve one integral equation to obtain

both the contributions of the ladder diagrams and the
cyclical diagrams. This is an essential reduction of the
scattering problem.

The reflected and transmitted intensities are conve-
niently described by bistatic coefficients. A bistatic coef-
ficient is the observed intensity in a certain direction for
normalized incident intensity, and corrected for the dis-
tance to the scattering medium and the observed area A,

γ(µi, µs) ≡ 2πr2

A
I(r) (3.15)

with µi = cos θi, µs = cos θs, and θi the direction of the
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incident light and θs — the direction of observation (both
with respect to the surface normal pointing outwards).

According to [7] the intensity outside the scattering
medium Iout is given by

Iout(r) = |Ψcoh(r1)|2 +
∫

dr′G(r′, r)G∗(r′, r)I(r′)

= |Ψcoh(r1)|2 +
∫

dr1dr2dr3 dr4G(r, r1)G∗(r, r2)

×K(r1, r2, r3, r4)Ψcoh(r3)Ψ∗
coh(r4) . (3.16)

The two Green functions transport the intensity inside
the scattering medium towards the observation point r.

From this, one can find for the reflection bistatic coef-
ficient

γ(µi, µs) =
1

8πA

∫

slab

dr1dr2dr3dr4

× exp (−(τ1 + τ2)/2µs) exp (iks · (r1 − r2))

×K(r1, r2, r3, r4) exp (−(τ3 + τ4)/2µi)

× exp (− iki · (r3 − r4)) (3.17)
and for the transmission bistatic coefficient

γ(µi, µs) =
exp (−b/µs)

8πA

∫

slab

dr1 dr2dr3dr4

× exp ((τ1 + τ2)/2µs) exp (iks · (r1 − r2))

×K(r1, r2, r3, r4) exp (−(τ3 + τ4)/2µi)

× exp (− iki · (r3 − r4)) . (3.18)

It is instructive to calculate separately the contribu-
tions to the reflected intensity of single scattering, the
ladder and cyclical diagrams. For the single scattering
bistatic coefficient γs(µi, µs) the authors of [7] find

γs(µi, µs)

=
1

8πA

∫

slab

dr1dr2dr3 dr4n|t|2δ(r12)δ(r13)δ(r14)

× exp
(
−τ1 + τ2

2µi
− τ3 + τ4

2µs

)

× exp (iks · (r1 − r2)− iki · (r3 − r4))

=
An|t|2lex

8πA

∫ b

0

dτ1 exp
(
−τ1

(
1
µi

+
1
µs

))

=
aµiµs

2(µi + µs)

[
1− exp

(
−b

(
1
µi

+
1
µs

))]
. (3.19)

Similarly, for the bistatic coefficient for the diffuse re-
flection γL(µi, µs), they obtain

γL(µi, µs) =
1

8πAµi

∫

slab

dr1 dr3F (r1, r3)

× exp
(
− τ1

µs
− τ3

µi

)
(3.20)

and for cyclical diagrams

γC(µi, µs) =
1

8πAi

∫

slab

dr1 dr3F (r1, r3)

× exp
(
−

(
1

2µs
+

1
2µi

)
(τ1 + τ3)

)

× exp (i (ks + ki) · (r1 − r3)) . (3.21)
The function F (r1, r3) should be solved (numerically)

from Eq. (3.13). Analytical expressions for Eqs. (3.21)
and (3.22) can be obtained by considering the diffusion
approximation for F (r1, r3). The function F (r1, r3) is
approximated by the diffusion propagator as given by
Eq. (3.13).

The reflected intensity for a semi-infinite medium with
non-absorbent particles (a = 1) is found to be

γL(µi, µs) =
3µiµs

2

(
τ0 − µiµs

µi + µs

)
(3.22)

and

γC(µi, µs) =
3
4

1
(α + ν)2 + u2

[
1
ν

+
1− exp(−2ατ0)

α

]

(3.23)
with

α = k0lsc

√
sin2 θs + sin2 θi , ν ≡ 1

2µi
+

1
2µs

,

u ≡ k0lsc(µi − µs) , lscτ0 = z0 .

The scattering mean-free path is given by lsc =
4π/n|t|2 and equal to the extinction mean-free path for
non-absorbent particles.

In Fig. 4, a plot of the diffusion reflected intensity as a
function of the backscatter angle, for normally incident
light is depicted. An increased intensity in the backscat-
ter direction that is entirely due to the cyclical diagrams
is exhibited. It is an interference contribution of counter
propagating or time reversed amplitudes. The angular
width of the interference contribution is inversely pro-
portional to k0lsc.

Fig. 4. Bistatic reflected intensity of a random
medium.

In the exact backscatter direction (θ = 0), the inten-
sity is twice that of the diffuse background

γL(1, 1) = γC(1, 1) =
3
4

(1 + 2τ0) .
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This is an exact relation when recurrent scattering
events are neglected. This can be seen as follows: if
Ai(ki, kf) denotes the amplitude of a reflected wave with
initial direction ki, first scattered at ri and last scattered
at rf in the final direction kS , we can write down the re-
flected intensity as a coherent sum over amplitudes of all
possible reflection paths

I(ki,kS) =

∣∣∣∣∣
∑

i

Ai

∣∣∣∣∣

2

=
∑

i,j

AiA
∗
j =

∑

i=j

AiA
∗
j

+
∑

i=−j

AiA
∗
j +

∑

i=j, i 6=−j

AiA
∗
j (3.24)

The summation indices i, j run over all possible paths
(we have omitted the wave vector dependence of each am-
plitude in Eq. (3.24)). The first term on the right hand
side of Eq. (3.23) is the diffuse scattered intensity: ampli-
tude and complex conjugate travel side by side through
the sample (ladder diagrams). The second term is the
interference contribution where the complex conjugate
follows the same path as the amplitude but in reversed
order (cyclical diagrams). This is denoted by i = −j in
the summation. The third term yields the speckle pat-
tern that is a wildly fluctuating (in space or direction)
random intensity pattern.

If we average over the configuration of the scatterers,
the speckle term drops out and we retain

〈I(θ)〉 =

〈∑

i

|Ai|2
〉

+

〈∑

i

|Ai|2 exp(i∆φi)

〉
(3.25)

where ∆φi, given by
∆φi(ki,kf) = (ki + kS) · (ri − rf) (3.26)

is the phase difference between the direct wave i and its
counter-propagating partner. In the exact backscatter
direction (ki = −kS) the phase difference ∆φ is zero for
all paths, hence

〈I(0)〉 = 2

〈∑

i

|Ai|2
〉

. (3.27)

For large backscatter angles, the second term
of Eq. (3.11) depends on the position of the scatterers
and thus averages out to zero. It follows that

〈I(θ À 0)〉 =

〈∑

i

|Ai|2
〉

. (3.28)

Therefore, the enhancement factor, 〈I(0)〉/〈I(θ À 0)〉,
of coherently backscattered light is exactly 2. Absorption
of the EM wave inside the disordered system does not
affect the enhancement factor, because the intensity of
the diffuse background and the coherently backscattered
light are reduced equally. The shape of the backscat-
ter cone will change for absorbent disordered media, the
triangular shape at θ = 0 will be rounded off [7].

4. On the Mishchenko decomposition

To illustrate main points of the polarimetric decom-
position for irregular media, as given in [9], a notion of

target vector k is helpful,

k = V ([S]) =
1
2
Tr ([S]Ψ) =

(
k0, k1, k2, k3

)T

,

(4.1)
where [S] is the Sinclair 2D scattering matrix defined by

[S] =

[
S11 S12

S21 S22

]
(4.2)

with radar cross-section of a given target as follows:
σqp = 4π |Sqp|2 (4.3)

with Esc = exp(− ikr)
r SEinc. The target vector in the

SU(2) base has the well known explicit form

k =
1√
2

×
[

S11 + S22 S11 − S22 S12 + S21 i(S12 − S21)
]T

.

(4.4)
Such a vectorization is used to generate a coherence

matrix from the outer product of a vector k with its con-
jugate transpose (or adjoint vector). In the above men-
tioned representation one can simply define

[T ] = k · k∗T = T †. (4.5)
One considers fluctuations in the elements of (4.4) such

that
k = k + ∆k . (4.6)

The coherence matrix of such a vector can be obtained
from (4.5) as

T = k†k = (k + ∆k) · (k† + ∆k†)

= [Tm] + k∆k† + ∆k†k + ∆k∆k†. (4.7)
We then obtain the averaged matrix 〈T 〉 as
〈T 〉 = [Tm] +

〈
∆k∆k†

〉
. (4.8)

From this one can define a (polarimetric) coherence ma-
trix of fluctuations as〈

∆k∆k†
〉

= 〈[Tf ]〉 . (4.9)

The starting point of the Mishchenko decomposition
in [10] of that problem of multiple scattering coherence
matrix par random medium are three components dis-
cussed of polarimetric EM scattering in random media.
In [3] they are given by single scattering ladder and cycli-
cal diagrams. The first is single scattering from a random
distribution of particles. The second is multiple incoher-
ent scattering due to the ladder terms in an expansion
of the multiple scattering integral equations. This yields
a diffuse or noncoherent background. This ladder com-
ponent can be calculated using classical vector radiative
transfer theory.

The third component arises from coherence (in the ex-
act backscatter direction) between a path and its time
reversed contribution. In multiple scattering terms, this
contribution arises from the sum of the foregoing cycli-
cal components in the integral equation. Mishchenko has
shown that for backscatter, there is a simple but impor-



1166 J. Kapelewski

tant relationship between the coherent and noncoherent
multiple scattering contributions.

In general terms, one can expand the coherence matrix
for this system as

〈T 〉 = 〈[Ts]〉+ 〈[TL]〉+ 〈[TC]〉 = 〈[Ts]〉+ 〈[TM]〉 ,(4.10)
where the subscripts s stands for single scattering, L for
the ladder terms, and C for cyclical terms. This con-
stitutes a class of decomposition theorem based on in-
dependent scattering processes. Mishchenko obtains his
important relationship between 〈[TL]〉 and 〈[TC]〉 by us-
ing the vector reciprocity theorem.

In terms of target vectors one can write the contribu-
tion to the backscattered field in the form

〈[TM]〉 =
〈[

k(1,n) + k(n,1)

] [
k∗T(1,n) + k∗T(n,1)

]〉

=
〈[

k(1,n)k
∗T
(1,n) + k(n,1)k

∗T
(n,1)

]〉

+
〈[

k(1,n)k
∗T
(n,1) + k(n,1)k

∗T
(1,n)

]〉

= 〈[TL]〉+ 〈[TC]〉 , (4.11)
where we see that the cyclical terms arise from the cross
coupling between system vectors for the two paths (these
cross terms are by definition zero for the ladder contri-
butions).

The main result follows from the observation that the
two system vectors k(1,n) and k(n,1) are of the form

k(1,n) =
(

k1 k2 k3 k4

)T

⇒

k(n,1) =
(

k1 k2 −k3 k4

)T

, (4.12)

where the minus sign arises since the scattering matrices
for paths (1, n) and (n, 1) are related by the vector reci-
procity theorem as

[
S(1,n)

]
=

[
1 0
0 −1

]
[
S(n,1)

]T
[

1 0
0 −1

]
(4.13)

where the coherent matrix [S(n,1)] is formed as a product
of n particle scattering matrices for the multiple scatter-
ing path (and is not necessarily symmetric).

Let us note that (4.12) simply arises from the con-
straint that for backscatter, the overall scattering matrix
must be antisymmetric. In terms of coherence matrices
it then easily follows from (4.11) and (4.12) that

〈[TL]〉 =




t11 t12 0 t14
t21 t22 0 t24
0 0 t33 0

t41 t42 0 t44


 ⇒

〈[TC]〉 =




t11 t12 0 t14
t21 t22 0 t24
0 0 −t33 0

t41 t42 0 t44


 . (4.14)

This result ensures that the observed coherence matrix
is 3× 3, as expected for backscatter problems. However,

from (4.14) it follows that if we can calculate the ladder
terms for backscatter, then we can immediately obtain
the contribution of the cyclic terms (simply by changing
the sign of the (3, 3) element in 〈T 〉. As noted earlier, the
ladder terms can be calculated using conventional vector
radiative transfer theory and so this result means that we
can use the same theory to calculate the cyclical terms
in the backscatter direction. Some implications of this
result for remote sensing applications have recently been
explored [10].

5. Concluding remarks

A concise analysis of early works on the multiple light
scattering, particularly deeply penetrating the subject,
was given by Kravtsov, as early as in 1993 [11]. The
similar topic for random dielectrics was developed also by
Orłowski and Rusek [12], which treated the problem in
terms of an original, self-consistent coupled dipole model.

Up to a decade ago the multiple scattering phenom-
ena in atmospheric researches was only associated with
the two- or three body scattering features (e.g. hail
flares and mirror images involving highly reflective sur-
faces). Recent atmospheric investigating as reported
in [13] is aimed at better understanding of the water
cycle and the role played by clouds and precipitation
in effecting the Earth climate. Examples reported are
TRRM 13.5 GHz, the CloudSat 94 GHz, the Earth
CARE 94 GHz, (0.6 mm), and the GPM dual 13–35 GHz
(1.6 mm) radars. The shift towards higher radar fre-
quencies increases the sensitivity to hydrometeors and
improves the spatial resolution with reducing the size and
weight of the radar system.

At mm wavelength, hydrometeors diffuse radiation
rather isotropically compared to the visible or near-
-infrared region where scattering is predominantly in the
forward direction. A complete understanding of radia-
tion transport modeling and data analysis method un-
der wide-angle multiple scattering conditions is manda-
tory for a correct interpretation of echoes observed by
millimeters radar. The paper [13] reviews the status of
research in this field. It shows the evidence of multi-
ple scattering effects from airborne and from CloudSat
observations, indicating that unique signatures observed
cannot be explained by simple scattering theory. Future
military application obey countermeasures systems such
as decoy decors, threat assessment, reconnaissance and
signal distribution.

A particular kind of enhanced backscattering for polar-
ized EM radiation, so-called giant enhanced backscatter-
ing, has been investigated by a group of researchers [14].

It was observed that for some weakly dielectric rough
surface, a significantly enhanced backscattering peak was
obtained in the retroreflection direction with a ratio of
peak to background as large as 10. This is much larger
than the factor of 2 predicted with cyclical diagrams con-
tribution from time reversed partner in beam coherent
backscattering. The author suggests [14] that such an
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effect may come from two contributions. One is due
to the ring which always make one lay on the specular
and retroreflection directions, being a result of the inter-
ference of two reflected paths which are only diffusively
scattered once. It exists even in moderately rough sur-
face and is supported only by large thickness at the film.
The contrast of the ring to its background can be very
large depending on the reflectivity of the rough surface.

A candidate to the other contribution to the peak is the
double passage configuration, consisting in the coherent
interference of a given radiation path which interacts with
the rough surface at two different points with its time
reversed partner.

The enhanced backscattering from very smooth con-
ducting surfaces was also examined.

The mechanism of such phenomenon has been at-
tributed to multiple scattering by a microstructure of the
crystalline grain on the surfaces. An analogous explana-
tion has been given for the similar behaviors of the scat-
tered wave observed at both dielectric rough and grain-
-periodic surface [15–21].

Recent interesting results illustrating the role of co-
herent backscattering in polarimetric radar can be found
in series of papers presented below, see references items
from [22] to [36].
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