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The analysis of vibrations excitation in surface acoustic wave vibrations sensors is the aim of our work. The
sensors are parts of electronic warning system which is intended to be mounted at fences of guarded object. The
vibration excitation with expected acceleration is needed during experiments. Elements of fences are replaced
by tense strings for experimental purposes and the surface acoustic wave vibration sensors are fastened to these
strings. Analysis of the assembly string-sensor takes into account not only the mass of sensor but its moment
of inertia, too. Free vibrations of string-sensor assembly are considered. The standard excitation by pulling off
string in chosen point causes vibrations. The normal vibrations of assembly (frequencies, orthogonal set of normal
functions) are calculated and used for calculations of free vibrations. The spectrum of the standard free vibrations
is calculated. The results will be used in the experimental stand. The calculations enable excitation of vibrations
with expected spectrum. The stand enables tests of the whole warning system. The thresholds of detection and
reaction at concurrent intruder alarm will be investigated at this laboratory stand.

PACS numbers: 77.65.Dq, 68.35.Iv

1. Introduction

In paper [1] surface acoustic wave (SAW) vibration sen-
sor used in linear electronic warning systems is presented.
The idea of the SAW vibration sensor is illustrated in
Fig. 1.

Fig. 1. Main elements of SAW vibration sensor.

One end of the plate made of anisotropic piezoelectric
material is clamped and on the opposite end a mass is
fixed. On the upper side of plate the SAW delay line is
prepared. The delay-line works as four-terminal network.
This four-terminal network may be considered as narrow-
-band filter with high mid-frequency (e.g. Ω0 ≈ 78 MHz).
The movement of the casing results in vibrations of the
plate and as the consequence, in the delay of the line
changes and the phase of signal going through the delay-
-line, too. The frequency of phase change is equal to the
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resonant frequency of plate. Vibrations with the first res-
onant frequency prevail and this frequency enables dis-
tinction which sensor is activated by an intruder. The
amplitude of phase changes proportionally to the ampli-
tude of plate vibrations which depends on intensity of
fence excitation. This effect is the most important for
threshold vibrations sensors.

Fig. 2. The element of warning system with SAW vi-
brations sensor.

Direct measurement of phase shift and its frequency is
rather difficult. The system seen in Fig. 2 changes the
above mentioned signal into alternating signal. The al-
ternating signal frequency is equal to the frequency of
plate and its amplitude is proportional to the ampli-
tude of phase shift in delay-line. The system seen in
Fig. 2 is a four-terminal network. Such systems may be
cascade-connected with another four-terminal networks
having the same mid-frequency but different frequencies
of plates. This enables building large systems. Therefore,
measuring the amplitude of delay in SAW delay-line we
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measure the fence vibrations; mesuring frequency of de-
lay in SAW delay-line we are able to distinguish, which
of SAW vibration sensors is excited by an intruder. All
sensors in the system must have different frequency of
their plates.

Before site investigations, the laboratory experiments
are necessary. The laboratory stand should enable con-
current excitation of some of sensors in the system with
known intensity and spectrum. We propose a system
with the sensors mounted at bass strings. Low frequency
of excitation is expected in real fences. The stand en-
ables investigation of interference between different sig-
nals from different sensors. Mechanical vibrations of ten-
sile strings with mounted sensors are to be investigated.
The assembly string-sensor should be excited in simple
and standard way. Relations between point and size of
pulling off and spectrum of free vibrations are calculated.
The mass of sensor is of the same order as the mass of
the string and its moment of inertia also influences vi-
brations. The derived orthogonality formula seems to be
unknown in papers. The results of simplified theory of
plate vibrations is described in Sect. 2. The discrepancy
between the simplified theory and more precise one were
investigated in [2]. At the base of the consideration pre-
sented in this paper more precise formula may be derived,
too. The analysis of assembly string-sensor vibration is
presented in Sect. 3. Some results and formulae end our
considerations.

2. Phenomena in SAW vibration sensor

The phenomena are described using the model with
one degree of freedom. HF signal transmitted by vibrat-
ing sensor changes the phase by

ϕn = 2πΩ0∆τn , (2.1)
where Ω0 is for angular frequency of high frequency (HF)
signal and ∆τn is for delay-time change of the “n” sensor.
The delay-time change is caused by:

• change of SAW velocity produced by stresses in the
vibrating plate,

• change of distance between SAW transducers also
caused by vibrations.

The precise model of the phenomenon, taking into the
account complicated state of deformation and many de-
grees of freedom, is described by the system of equations
which may be solved only by numerical methods. To
avoid these calculations we propose the simplified model
of the plate vibrating with one degree of freedom derived
by the Rayleigh method and verified by our experiments
[2–6].

The delay-time change ∆τn is proportional to the dis-
placement of plate end during vibrations

∆τn ∼ y(t) . (2.2)
From (2.1) we derive

ϕn ∼ y(t) . (2.3)
The displacement of plate end is derived from the equa-

tion [5, 6]:
d2y(t)
dt2

+ ω2
0τ

dy(t)
dt

+ ω2
0y(t) =

d2Y (t)
dt2

, (2.4)

where d2Y (t)
dt2 is for the casing acceleration in y-direction,

τ is for equivalent damping coefficient [2], ω0 is for reso-
nant angular frequency of plate

ω0 = 3.5172
(

h

l2

) √
Ee

12ρ
(1 + r3.9689)−0.5

. (2.5)

l is the length of plate, h is the thickness of plate, ρ is
the mass density of plate, r is the ratio of the mass at
the end of plate to the mass of plate, Ee is the equivalent
Young modulus of plate [2]. The solution to Eq. (2.4) is
known as the Duhamel integral

y(t) = A exp
(−0.5ω2

0τt
)
sin (ωr(t + α))

+
1
ωr

∫ t

0

d2Y (ζ)
dζ2

exp
(−0.5ω2

0τ(t− ζ)
)

× sin (ωr(t− ζ)) dζ , (2.6)
where

ωr = ω0

√
1− 0.25ω2

0τ2 . (2.7)
The constants A and α are calculated using initial con-

ditions.
Both parts of solution (2.6) contain the function
ys(t) = exp(−0.5ω2

0τt) sin(ωrt) (2.8)
known as the impulse response. The function (2.8) is the
product of the harmonic function and the exponentially
diminishing function of time.

The resonant angular frequency of plate is contained
in this harmonic function. The change of HF signal (Ω0)
is the sum of:

• convolution of impulse response and casing accel-
eration,

• damped free vibrations of the plate.

Both terms contain the harmonic function of time. The
angular frequency is equal to the resonant angular fre-
quency of “n”-th plate. The amplitude is slowly changing
with time.

If the frequencies of different plates are not the same,
the system enables identification of vibrating sensor or
sensors. The alarm state may be signaled when the am-
plitude of vibration is greater than the threshold value.
If the system would register both values (frequency and
amplitude) it may be used as element of guarding ar-
rangement.

3. Vibration of laboratory stand

The vibrations of laboratory stand generate the casing
acceleration d2Y (t)

dt2 . The SAW vibration sensor mounted
at string is seen in Fig. 3. The sensor vibrations are ex-
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Fig. 3. The SAW vibration sensor mounted at the
string.

cited in the standard and planed manner. The presented
considerations enable us to plan the spectrum of vibra-
tions.

3.1. Mechanical parameters of the string-sensor object

The mechanical parameters of the string-sensor object
are the following:

Dimensions:

• The length of left (right) part of string LL (LR),
the length of string L.

• The area of cross-section of string S.

• The distance of sensor’s centre of mass from the left
fix-point χCA.

• The distance between the string and the centre of
mass dCA.

• The distance between the point where the string is
pulled off and the left end of string LF.

• The maximum of pull off at the initial state zF (see
Fig. 4).

Masses:

• The sensor mass mA.

• The sensor moment of inertia IA = mAr2
A. The

symbol rA is for sensor radius of gyration.

• The mass density of string ρ.

Other:

• The string tension force N .

• The number of harmonics ih.

During considerations the derived parameters would
be useful. The list of derived parameters is the following:

• a =
√

n/ρS, the wave velocity in string.

• mw = mA
ρSL , the ratio sensor mass to string mass.

• λC = xCA
L−LL−LR

; L − LL − LR — the distance be-
tween points where the sensor is fixed to string.

• Iw = mw

(
rA

xCA

)2

λ2
C, the dimensionless moment of

inertia.

• Ω = ωL
a , the dimensionless angular frequency.

• ζ = x
L , the dimensionless coordinate.

• ζL = LL
L , ζR = LR

L , ζF = LF
L ,

• λ = L−LL−LR
L , the ratio of the distance between

points where the sensor is fixed to string to the
length of string.

3.2. Equations of the string-sensor object vibrations

The free vibrations are considered. The argument of
functions x is seen in Fig. 4. The standard initial state
is drawn in dashed lines.

Fig. 4. The system string-sensor at standard initial
conditions.

The plane, linear vibrations are considered. The sym-
bol z(x, t) is for deflection. The equation of vibrations

∂2z(x, t)
∂t2

− a2 ∂2z(x, t)
∂x2

= 0 (3.1)

is fulfilled for x ∈ (0, LL) and x ∈ (L− LP, L).
The boundary condition consists of
z(0, t) = 0 , z(L, t) = 0 , (3.2)

and equations of small, plane vibration of sensor A:

mw(1− λC)
∂2z(LL, t)

∂t2
+

a2

L

∂

∂x
z(LL, t)

+mwλC
∂2z(L− LR, t)

∂t2
− a2

L

∂

∂x
z(L− LR, t) = 0 ,

(3.3)

− Iw
∂2z(LL, t)

∂t2
− a2

L

[
λC

∂

∂x
z(LL, t) +

z(LL, t)
L− LL − LR

]

+ Iw
∂2z(L− LR, t)

∂t2
+

a2

L

[
z(L− LR, t)
L− LL − LR

− (1− λC)
∂

∂x
z(L− LR, t)

]
= 0 . (3.4)

At initial state deflection is proportional to zF and ve-
locity is equal to 0:

z(x, 0) = zFU(x) ,
∂z(x, 0)

∂t
= 0 . (3.5)

The function U(x) is described in (3.17).
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3.3. Normal vibrations of the string-sensor object
Normal vibration describes harmonic vibrations of the

system with one of possible characteristic frequencies [4].
The normal functions are also calculated. The normal
functions form orthogonal system. The adequate formula
for inner product is disclosed. Knowing normal vibra-
tions (frequencies, functions and inner product) we are
able to calculate free and forced vibrations. We seek the
normal vibrations

z(x, t) = Z(ζ) cos(ωt) , ζ =
x

L
. (3.6)

The function Z(ζ) is the solution of the boundary prob-
lem

d2Z(ζ)
dζ2

+ Ω2Z(ζ) = 0 , Ω =
ωL

a
, (3.7)

0 < ζ < ζL and 1− ζR < ζ < 1 , ζL =
LL

L
,

ζR =
LR

L
, (3.8)

Z(0) = 0 , Z(1) = 0 , (3.9)

dZ(ζL)
dζ

−mw(1− λC)Ω2Z(ζL)− dZ(1− ζR)
dζ

−mwλCΩ2Z(1− ζR) = 0 , (3.10)

λC
dZ(ζL)

dζ
+ Z(ζL)

(
1
λ
− IwΩ2

)

+(1− λC)
dZ(1− ζR)

dζ

+Z(1− ζR)
(

IwΩ2 − 1
λ

)
= 0 . (3.11)

We seek the solution to the system (3.7)–(3.11) as

Z(ζ) =

{
B sin(Ωζ), 0 < ζ < ζL,

C sin(Ω(1− ζ)), 1− ζR < ζ < 1.
(3.12)

The function (3.12) fulfils (3.7), (3.9). From (3.10),
(3.11) we get

B [cos(ΩζL)−mw(1− λC)Ω sin(ΩζL)]

+C [cos(ΩζR)−mwλCΩ sin(ΩζR)] = 0 , (3.13)

B

[
ΩλC cos(ΩζL) + sin(ΩζL)

(
1
λ
− IwΩ2

)]

+C

[
− Ω(1− λC) cos(ΩζR)

+ sin(ΩζR)
(

IwΩ2 − 1
λ

)]
= 0 . (3.14)

The condition
det{(3.13), (3.14)} = 0 (3.15)

is the characteristic equation. From (3.15) we calcu-
late characteristic (resonance) angular frequencies Ωi,
i = 1, 2, 3, . . . , ih and ratio Bi/Ci. The inner product

of different normal functions is equal to 0:
(
Ω2

i − Ω2
j

) {[∫ ζL

0

Zi(ζ)Zj(ζ)dζ

+
∫ 1

1−ζR

Zi(ζ)Zj(ζ)dζ

]

+mw(1− λC)Zi(ζL)Zj(ζL)

+mwλCZi(1− ζR)Zj(1− ζR)

+ (Iw + mwλ2
C −mwλC)

× [Zi(1− ζR)− Zi(ζL)]

× [Zj(1− ζR)− Zj(ζL)]
}

= 0 . (3.16)

3.4. Free vibrations of the string-sensor object

The free vibrations of the system string-sensor caused
by standard excitation are considered. Initial conditions
(3.5) contain the function

z(x, 0) = zFU(x) , (3.17)

z(x, 0)

= zF

{
ζ
ζF

for 0 ≤ ζ ≤ ζF,
1−ζ
1−ζF

for ζF < ζ ≤ ζL and 1− ζR ≤ ζ ≤ 1,

when LF ≤ LL,

z(x, 0) = zF

{
ζ
ζL

for 0 ≤ ζ ≤ ζL,
1−ζ
1−ζR

for 1− ζR ≤ ζ ≤ 1,

when LL < LF < 1− LR,

z(x, 0)

= zF

{
ζ
ζF

for 0 ≤ ζ ≤ ζL and 1− ζR ≤ ζ ≤ ζF
(1−ζ)
1−ζF

for ζF ≤ ζ ≤ 1

when 1 − LR ≤ LF. The formula (3.17) written shortly
is z(x, 0) = zFU(ζ).

∂z(x, 0)
∂t

= 0 . (3.18)

The formula (3.17) is illustrated in Fig. 5.
The free vibrations are the sum of normal vibra-

tions [4]:

z(x, t) = zF

i=ih∑

i=1

Zi(ζ)Ti(t) . (3.19)

From Eq. (3.1) we get
d2Ti(t)

dt2
+ ω2

i Ti(t) = 0 , ωi = Ωi
a

L
, (3.20)

so
Ti(t) = Ai cos(ωit) + αi sin(ωit) ,

i = 1, 2, 3, . . . , ih . (3.21)
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Fig. 5. The standard initial deflection of string-sensor
system.

From Eq. (3.18) we get
αi = 0 , i = 1, 2, 3, . . . , ih . (3.22)

The function U(ζ) is approximated by series

U(ζ) =
j=ih∑

j=1

Zj(ζ)uj . (3.23)

Taking into the account (3.16) we get

ui =
Ni

Fii
for i = 1, 2, . . . , ih , (3.24)

where

Ni =
∫ ζL

0

Zi(ζ)U(ζ)dζ +
∫ 1

1−ζR

Zi(ζ)U(ζ)dζ

+mw(1− λC)Zi(ζL)U(ζL)

+mwλCZi(1− ζR)U(1− ζR)

+ (Iw + mwλ2
C −mwλC)

× [Zi(1− ζR)− Zi(ζL)]

× [U(1− ζR)− U(ζL)] , (3.25)

Fii =
∫ ζL

0

Zi(ζ)Zi(ζ)dζ +
∫ 1

1−ζR

Zi(ζ)Zi(ζ)dζ

+mw(1− λC)Zi(ζL)Zi(ζL)

+mwλCZi(1− ζR)Zi(1− ζR)

+ (Iw + mwλ2
C −mwλC)

× [Zi(1− ζR)− Zi(ζL)]

× [Zi(1− ζR)− Zi(ζL)] . (3.26)

From the initial conditions (3.17) we get
Ai = ui , i = 1, 2, . . . , ih . (3.27)
The integrals in (3.25), (3.26) are calculated analyti-

cally (not by a numerical methods).

4. Example of results

Calculations enable validation of computer programs
and testing the influence of parameters of the string-
-sensor system. The calculations would be performed
for experimental research. The examples of results are
presented in the paper. Calculations were carried out for
constant parameters: L = 1.008 m, L−LL−LR = 90 mm,
xCA = 50.25 mm, dCA = 6.5 mm, S = 1.2 mm2,
mA = 27 g, rA = 26 mm, ρ = 5500 kg/m3. These pa-
rameters are for the existing string and the sensor. The
parameters N = 380 N, ih = 10, are arbitrarily chosen.
The influence of parameters LF and LL was considered.

Fig. 6. Normal function no. 1. LL = 250 mm.

Fig. 7. Spectrum LF = 200 mm, LL = 250 mm.
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Fig. 8. Normal function no. 5. LL = 250 mm.

Fig. 9. Spectrum LF = 200 mm, LL = 668.0 mm.

If the shape of the standard deflection looks like the
first normal function (Fig. 6), the first mode is the most
important (see Fig. 8).

When the standard deflection and the first normal
functions have different shape (e.g Fig. 7), then more
normal modes should be taken into the considerations
(see Fig. 10).

If the shape of the standard deflection looks like the
first normal function, the first mode is the most impor-
tant.

When the standard deflection and the first normal
functions have different shape, then more normal modes
should be taken into consideration.

The prepared computer programs enable computation
of acceleration of the casing. More precise analysis of the
sensor plate vibration is also possible thanks to knowl-

edge about normal and free vibrations of the string-sensor
system.

Our aim — to calculate the relations between the form
of initial deflection and the spectrum of the excited free
vibrations — is achieved. The program supporting ex-
periments with linear electronic warning systems is ready.

TABLE
Normal (resonance) frequencies.

No. f [Hz] Period [s]
1 41.7920 0.0239280
2 172.937 0.0057825
3 228.977 0.0043672
4 365.500 0.0027360
5 495.661 0.0020175
6 542.838 0.0018422
7 721.053 0.0013869
8 900.018 0.0011111
9 967.094 0.0010340
10 1079.335 0.0009265
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