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Precession of magnetization induced by laser pulses in (Ga,Mn)As was studied by the pump-and-probe
technique. We concentrated on various experimental aspects that can be used to identify a part of the measured
magneto-optical signals that provides information about the dynamics of magnetization. We also revealed that that
it takes about 80 ps before the quasi-equilibrium precession of magnetization is initiated by the impact of laser pulse.

PACS numbers: 75.50.Pp, 75.78.−n, 78.47.J−, 78.47.D−

1. Introduction

Diluted magnetic semiconductors, with (Ga,Mn)As as
the most studied representative, have attracted a signif-
icant attention in recent years mainly due to the carrier
mediated ferromagnetism [1]. The impact of a laser pulse
on (Ga,Mn)As leads to the photo-injection of carriers and
to the temperature transient increase that in turn induce
a precession of magnetization, which can be detected by a
time-resolved magneto-optical (MO) spectroscopy [2–4].
However, we have observed recently that the measured
MO signal contains not only the information about the
ferromagnetically coupled Mn spins, but it is affected also
by the laser-induced change of the complex index of re-
fraction [5]. In this paper we concentrate on the identifi-
cation of a part of the measured MO signal that provides
information about the dynamics of magnetization.

2. Experimental

The experiments were performed on the 20 nm thick
ferromagnetic layer of Ga1−xMnxAs grown on a GaAs
(001) substrate by the low-temperature molecular beam
epitaxy. Content of Mn, Curie temperature, and hole
concentration in the sample are x ≈ 0.03, TC ≈ 77 K,
and p ≈ 4.7 × 1020 cm−3, respectively. The easy axis of
magnetization lies in the sample plane; the magnetization
is oriented close to [010] direction during the experiment.
The polarization of the pump pulses was circular (with
the helicity controlled by the quarter-wave plate) and the
probe pulses were linearly polarized (along the direction
of magnetization). The angles of incidence (measured
from the normal of the sample surface) for pump and
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probe beams were 3◦ and 9◦, respectively. All experi-
ments were done at 15 K with no external magnetic field
applied (µ0Hext < 0.1 mT) with a time resolution of
about 200 fs.

3. Results and discussion

The impact of pump laser pulses on the sample modi-
fies its magnetic and optical properties and these changes
are detected by time-delayed probe pulses. We used the
experimental setup where the pump-induced changes of
rotation of probe polarization (∆θ) or ellipticity (∆η)
are measured simultaneously with the transient change
of the sample reflectivity ∆R/R [3].

Typical data of ∆θ measured for circularly polarized
pump pulses are shown in Fig. 1. The data clearly reveal
that after ≈ 100 ps the dynamics of ∆θ does not depend
on the helicity of the circular polarization. On the other
hand, the signal at shorter time delays is strongly polar-
ization dependent. This polarization-sensitive ∆θ signal
does not depend significantly on temperature (i.e., it is
present even above TC), orientation of linear polariza-
tion of the probe pulses or external magnetic field (not
shown here). The absorption of circularly polarized light
leads to a photogeneration of spin-polarized carriers [3].
Therefore, we attribute the polarization-sensitive ∆θ sig-
nal to the dynamics of spin-polarized electrons. The very
similar decay of the polarization-sensitive ∆θ signal and
the sample reflectivity ∆R/R, which is not sensitive to
the pump polarization, shows that the dynamics of spin-
-polarized electrons is dominated by their lifetime (see
the inset of Fig. 1). The most important conclusion for
the investigation of magnetization dynamics is that this
polarization-sensitive signal does not provide direct in-
formation about the ferromagnetic order in the sample.

In the following, we will concentrate on the
polarization-independent part of the signal, which is de-
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Fig. 1. Dynamics of probe polarization rotation (∆θ)
measured for circularly polarized pump pulses (σ+ and
σ−) at 15 K with no external magnetic field applied;
80 fs pulses tuned to 1.63 eV with fluence of 46 µJ cm−2

were used. Inset: polarization-sensitive part, (σ+ −
σ−)/2, of the measured ∆θ signal (solid line) and the
dynamics of transient reflectivity (line with points).

Fig. 2. Polarization-independent part, (σ+ +σ−)/2, of
the rotation (∆θ) and ellipticity (∆η) (points) measured
under identical conditions (we note that no normaliza-
tion was applied). The solid line is the fit by a sum of
the exponentially damped sine harmonic function and
the pulse-like function [5]; the parameters of the fit are:
A = 82 µrad, τD = 145 ps, ω = 31.3 GHz, ϕ = 59◦,
C = −42 µrad, τ1 = 1 ps, τ2 = 700 ps. Inset: detail
of the MO data and the transient reflectivity (line with
points).

fined as an average of the signals measured with σ+ and
σ− polarized pump pulses. In Fig. 2 we show the dynam-
ics of ∆θ and ∆η. The curves are very similar except for
short time delays. This implies that in the measured MO
signal the “optical part” of the signal [6] has a sizable con-
tribution only in a time range where the reflectivity (i.e.,
the complex index of refraction) is modified considerably
by pump pulses (see the inset of Fig. 2). For time delays
larger than ≈ 80 ps the polarization-independent MO
data can be fitted well by a phenomenological model [3, 5]

where the signal is decomposed into a damped precession
of the magnetization around its quasi-equilibrium easy
axis position (the oscillatory signal with amplitude A,
angular frequency ω, initial phase ϕ and damping time
τD) and into a tilt of the easy axis in the sample plane
(the pulse-like function with amplitude C and rise and
decay times τ1 and τ2, respectively). The strong devia-
tion of the fit and the data for shorter time delays (see
the inset of Fig. 2) illustrates that it takes about 80 ps
to establish a quasi-equilibrium precession of the magne-
tization. Our observation that the magnetization preces-
sion is not fully developed immediately after an impact of
the laser pulse is in accord with the results reported also
for other magnetic materials. For example, in a very re-
cent experiment in GdFeCo films a time delay of ≈ 90 ps
was necessary before the laser pulse-induced switching of
magnetization was completed [7].

4. Conclusions

We identified a part of the measured MO signal that
provides information about the collective oscillations of
ferromagnetically coupled Mn spins. We also revealed
that the quasi-equilibrium precession of magnetization is
initiated as late as 80 ps after the impact of the pump
pulse.
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