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The spin-1/2 XXZ diamond chain is considered within the Jordan–Wigner fermionization. The fermionized
Hamiltonian contains the interacting terms which are treated within the Hartree–Fock approximation. We obtain
the ground-state magnetization curve of the model for some particular cases and compare the results with the
exact diagonalization data for finite chains of 30 spins and known exact results. We also analyze the validity of
the suggested approximation.
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1. Introduction

The spin-1/2 XXZ diamond chain as a quantum frus-
trated system is an interesting topic for the theoretical
research, since it exhibits many phenomena related to
interplay of quantum fluctuations and competing inter-
actions. The exact results for this model are available
only for limited cases [1, 2], and the earlier studies used
mainly the numerical methods [3–5]. We suggest an ana-
lytical method based on the fermionization of the initial
spin-1/2 model. The present work is an extension of our
previous study of the XX diamond chain [6] using the
Jordan–Wigner transformation and the Hartree–Fock ap-
proximation.

The goal of the paper is to explain the properties of the
frustrated model on the fermionic language for a more
general XXZ model. We accompany our approximate
calculations by the results of the exact diagonalization
and also compare them with the particular cases where
the exact results are available [1, 2].

2. Model and method

We consider the quantum spin-1/2 XXZ model on the
generally distorted diamond chain (see Fig. 1 in Ref. [6])
with the following Hamiltonian:
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Here, sα
p,l (α = x, y, z) are the Pauli spin-1/2 operators

with the first index corresponding to a sublattice and the
second index to a cell, Jx

p = Jy
p = Jp > 0, Jz

p = ∆Jp > 0,
∆ is the interaction anisotropy, and h is the external
magnetic field (we set gµB = 1). Using the spin raising
and lowering operators s±p,l = sx

p,l ± isy
p,l one can rewrite

the xy-part of the Hamiltonian as a quadratic form of
the mentioned operators. The zz interaction, due to the

relation sz
p,l = s+

p,ls
−
p,l − 1/2, leads to the product of four

spin-lowering and raising operators.

Following the procedure described in Ref. [6], we spec-
ify the Jordan–Wigner transformation in the form: c1,l =∏3
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q,lcq,l) is the Jordan–Wigner factor. Here new
operators cp,l satisfy the Fermi commutation relations.
The fermionic expression for the z-component of the spin
operator can be easily obtained as sz

q,l = c+
q,lcq,l − 1/2.

Therefore, the zz-part of the Hamiltonian contains the
four-fermion term. The xy-part of the Hamiltonian in
terms of new Fermi operators is as follows:
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Let us note that the transformed Hamiltonian contains
the fermion interaction for terms proportional to the J3

coupling which is usually assumed to be smaller than J2.
We should also note the relation between the spins-1/2
and spinless fermions: the spin-down (-up) state corre-
sponds to the empty (filled) fermionic state; the action of
the fermion creation and annihilation operators is anal-
ogous to the action of spin raising and lowering opera-
tors in spin language. The resulting Hamiltonian repre-
sents the interacting Fermi gas. To proceed we use the
Hartree–Fock approximation where all interacting terms
are factorized preserving all pair correlations between
nearest neighbors of type 〈c+

p,lcq,m〉. Thus, the Hamilto-
nian becomes a quadratic form in terms of the Fermi op-
erators. It can be diagonalized using the Fourier and Bo-
golyubov transformation, and the thermodynamics and
fermionic correlation functions are easily found. How-
ever, it depends parametrically on the unknown contrac-
tions 〈c+

p,lcq,m〉 which have to be found self-consistently.

(978)
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3. Results
Solving the self-consistent equation we found that the

dimer–monomer ground state for the symmetric dia-
mond chain [1] is recovered. Indeed, if J2 ≥ 2J1 and
the external field 0 < h < J1∆ + J2(1 + ∆)/2, we
obtain the following solutions for the elementary con-
tractions: 〈c+

1,lc1,l〉 = 1, 〈c+
2,lc2,l〉 = 〈c+

3,lc3,l〉 = 1/2,
〈c+

1,lc2,l〉 = 〈c+
1,lc3,l〉 = 0, 〈c+

2,lc3,l〉 = −1/2. The ground
state of the corresponding fermion model is as follows:
|GS〉 =

∏
l c

+
1,l(c

+
2,l − c+

3,l)/
√

2|0〉 where |0〉 denotes the
empty state. Using the relation between fermionic and
spin states one can see that it corresponds to the dimer–
monomer state in spin language (see also Ref. [6]).

Fig. 1. The ground state magnetization versus exter-
nal field for (a) J1 = J3 = 1, J2 = 1.75; (b) J1 = 1,
J2 = 1.25, J3 = 0.45. Step-like dashed lines represent
the exact diagonalization data for 30 spins, solid lines
correspond to the approximated results, dotted lines in-
dicate the magnetization jumps.

The results for the symmetric diamond chain below the
dimer–monomer limit is shown in Fig. 1a. We observe an
excellent agreement with the exact diagonalization data
except for small fields where our mean-field-type approx-
imation produces the non-zero magnetization. As an ex-
ample of the distorted chain, we have chosen the param-
eter set used previously for azurite [7]. In Fig. 1b we ob-
tain a good agreement with the XX limit. Particularly,
the magnetization curve shows the 1/3-plateau and zero-
-magnetization in zero field. However, for the isotropic
Heisenberg interaction the discrepancy between the ap-
proximate and exact results raises up quickly below the
upper critical field. The exact diagonalization data for
∆ = 1 seem to show a cusp in the magnetization curve
at 2/3 of the saturation magnetization. It might be the
sign that the magnetic cell is doubled for this model. As
it was discussed in [6], to describe this kind of behavior,

it is necessary to consider also non-uniform elementary
contractions. Another drawback of the Hartree–Fock ap-
proximation is the artificial jumps of the magnetization.

We have also examined our method by comparison
with the exact results for the Ising–Heisenberg diamond
chain obtained by means of decoration–iteration pro-
cedure [2]. It is the special case of the anisotropic
diamond chain where the spins on the vertical bond
are coupled by the Heisenberg interaction whereas all
other couplings are of the Ising type. The model (1)
corresponds to the model considered in [2], if we put
Jx,y

1 = Jx,y
3 = 0, Jx,y

2 = ∆J2, Jz
1 = Jz

3 = J1, Jz
2 = J2.

Depending on the ratio between the interaction cou-
plings, anisotropy and external field the system may
stay in different phases: |FRI〉 =

∏
l |↓1,l〉|↑2,l ↑3,l〉,
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∏

l |↑1,l〉(|↑2,l ↓3,l〉 − |↓2,l ↑3,l〉)/
√
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l |↑1,l〉|↑2,l ↑3,l〉. Within our Hartree–Fock approach

it is possible to recover the ground state phase dia-
gram and all phase boundaries. The mentioned states
in the fermion representation have the form: |FRI〉 =∏
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4. Conclusions

To conclude, we have considered the approach based
on the Jordan–Wigner fermionization and subsequent
Hartree–Fock approximation for the spin-1/2 anisotropic
diamond chain. We have revealed that such an approach
recovers the exact results for the phases characterized
by short-range correlations as, for instance, the dimer–
monomer phase. It also provides a good description of
the ground state magnetization for the symmetric dia-
mond chain. However, for the distorted diamond chain
the inclusion of the zz interactions between spins may
lead to the qualitative change of the magnetization curve
which cannot be explained within the current approxi-
mate method.
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