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The bimetallic chain complex [Cu(tren)]ReCl6 is numerically analysed on the basis of the anisotropic quantum
Heisenberg model without the mean-field corrections by the density-matrix renormalization group approach.
The high accuracy results of our simulations have been fitted to the corresponding experimental susceptibility
data above the crossover regime. The set of model parameters comprising the strength of antiferromagnetic
couplings, the single-ion anisotropy term and the corresponding g factors have been found: J/kB = 3.5 ± 0.5 K,
D/kB = 35± 5 K, gCu = 2.07± 0.05 and gRe = 1.73± 0.01.

PACS numbers: 75.50.Xx, 75.10.Jm, 02.70.Rr

1. Introduction

With respect to magnetic properties, the complexes
with the second and the third series of transition ele-
ments are less examined than complexes with the lighter
element of the group. Polymetallic complexes synthesised
by using the rhenium ions (building anionic blocks) and
copper(II) ions (building cationic blocks) belong to the
first group. We have studied theoretically the bimetal-
lic chain complex [Cu(tren)]ReCl6, where the used tren
[tris(2-aminoethyl)amine] is a tetradentate ligand [1].
The rhenium(IV) complex forms octahedral compounds,
whereas the above ligands are able to block four coordi-
nation sites around the potentially octahedral CuII ion,
leaving two coordination sites for other ligands.

The magnetization vs. temperature curve measured
at 50 Oe, has revealed the presence of spontaneous
magnetization below the transition temperature T ≈
3.15 K. Spontaneous magnetization appears as the re-
sult of switching on the interchain exchange interactions
at low temperatures that leads to 3d magnetic order-
ing of ferrimagnetic chains. Since we limit our study to
temperatures above the crossover from the 3d to the 1d
behaviour, the interchain interactions can be neglected.
Therefore we can analyse the experimental results on the
basis of the one-dimensional quantum Heisenberg model.
It is worth stressing that the molecular field corrections
are absent in the 1d phase because of the vanishing mag-
netization. So far [1], the compound has been studied
qualitatively on the basis of the Ising model and simpli-
fied expressions for the longitudinal and perpendicular
magnetic susceptibilities.

2. Model

For our analysis of the magnetic properties of the rhe-
nium(IV) complex the following Hamiltonian is used:
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where spins s = 1/2 and S = 3/2 are located on the
odd and even sites and refer to CuII and ReIV ions, re-
spectively, and L stands for the length of the chain. In
our model the magnetic interactions are isotropic and the
rhenium(IV) ions are subject to the single-ion anisotropy.
We assume that gx = gy for both ions and the thermo-
dynamic properties are isotropic in the xy plane. The
Zeeman terms depend on the field directions but it is
enough to consider the x and z orientations.

The thermodynamic quantities, as the free energy or
magnetization, can be calculated by means of the par-
tition function Z = Tr exp(−H/kBT ), where kB is the
Boltzmann constant. To consider the macroscopic limit
L → ∞, the quantum transfer matrix approach (QTM)
is referred here [2–4]. Under the Suzuki–Trotter formula
the partition function of the quantum chain can be con-
verted into a series of approximants ZM of the equiva-
lent two-dimensional classical system, where M is called
the Trotter number. In practice, computations of ZM

are possible for relatively small M which can spoil the
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reliable estimations of the thermodynamic functions in
a low-temperature region. In order to overcome this re-
striction and cover the entire experimental 10–300 K tem-
perature range, the density-matrix renormalization group
approach (DMRG) is applied [5–7]. It is worth noting
that only the presence of 3d magnetic order prevents us
from studies at lower temperatures, because there, our 1d
model is no valid anymore. In general, the method can
be successfully applied in much lower temperatures [8].

The DMRG method is a type of variational method,
where the main idea is to find a representation of the
Hilbert space of states in a restricted space which is much
smaller than the original one. Both the QTM and DMRG
methods are free from statistical errors and the nega-
tive sign problem which hampers convergence of physi-
cal quantities at low temperatures. For one-dimensional
quantum systems DMRG approach offers a very efficient
iterative truncation algorithm for constructing the ef-
fective transfer matrices with large Trotter numbers M
[8, 9]. Naturally, the lower temperature, the stronger
quantum character of phenomena and higher M has to
be taken into account. Although the majority of our re-
sults are provided with M = 5, we have checked that
higher M = 7 does not improve the results (the correc-
tions do not exceed 0.001%) so that the DMRG technique
leads to the accurate reliable numerical results.

3. Results and discussions

In our analysis the magnetic susceptibility data mea-
sured at the field H = 0.5 T [1] are reanalysed. We have
scanned the positive and negative values of J confirming
the antiferromagnetic interactions between nonequivalent
magnetic centers, although our estimate J/kB = −3.5
(±0.5) K is somewhat lower than that found before [1].
In parentheses the uncertainty of a given value is de-
fined. In Fig. 1 we present a comparison between exper-
iment and our results, where the continuous lines refer
to D > 0 and the dashed line to D < 0. The dashed
line occurs if it can be distinguished from the continuous
line. In the main part, the χT product is plotted in the
experimental temperature region, whereas in the inset,
in the susceptibility versus temperature is shown. Fit-
ting the experimental susceptibility data available, only
the absolute value |D/kB| = 35 K (±5 K) can be de-
termined. This means that for the powder susceptibility
data, where only the average χav = 2/3χx + 1/3χz can
be measured [8], it is not possible to distinguish between
the results following from the ground state Kramers dou-
blet m = ±1/2 or m = ±3/2. For the positive D, the
ground state of the Re(IV) ion corresponds to m = ±1/2,
whereas for the negative D, it corresponds to m = ±3/2.
As expected [1, 10] for the Re(IV) ion, the anisotropy
is strong with respect to the exchange coupling. As to
the g factors, we have estimated gCu = 2.07 ± 0.05 and
gRe = 1.73± 0.01.

It is worth mentioning that the sign of the rhe-
nium(IV) single-ion anisotropy could be determined from

Fig. 1. Temperature dependence of the magnetic sus-
ceptibility for the CuRe sample. The inset presents the
average magnetic susceptibility vs. temperature.

Fig. 2. Temperature dependence of the average, longi-
tudinal and perpendicular magnetic susceptibilities for
the CuRe model sample.

the single-crystal magnetometry. This possibility is
demonstrated by the results of our calculations of the
longitudinal and perpendicular susceptibility (see Fig. 2).
As one can see, the components have substantially differ-
ent temperature behaviour. So, if we had measurements
for the crystal, we could distinguish the two cases.

4. Conclusions

The experimental evidence of the absence of sponta-
neous magnetization above T = 3.15 K enables us to ap-
ply a one-dimensional model and neglect the interchain
interactions. To take into account the quantum nature
of spin, we use intrinsically quantum Heisenberg model
and simulations which preserve the quantum properties
of the model.

Our analysis confirms the weak antiferromagnetic cou-
pling between the CuII and ReIV ions and reveals the
importance of the anisotropy term for the rhenium(IV)
ions. Our estimates of the parameters are consistent with
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the previous findings but are based on the Heisenberg
coupling between the CuII and ReIV ions and reliable
DMRG-based simulations.

Acknowledgments

This work was supported by the Polish Ministry of
Science and Higher Education through grants N N202
290138 and N N202 235537. Numerical calculations
were performed in PSNC Poznań (Poland) and WCSS
Wrocław (Poland, grant 82).

References

[1] A. Tomkiewicz, A. Zygmunt, J. Mroziński, J. Mol.
Struct. 644, 97 (2003).

[2] G. Kamieniarz, M. Bieliński, J.-P. Renard, Phys.
Rev. B 60, 14521 (1999).

[3] R. Matysiak, G. Kamieniarz, P. Gegenwart,
A. Ochiai, Phys. Rev. B 79, 224413 (2009).

[4] G. Kamieniarz, P. Kozłowski, G. Musiał, W. Florek,
M. Antkowiak, M. Haglauer, A. Caramico D’Auria,
F. Esposito, Inorg. Chim. Acta 361, 3690 (2008).

[5] U. Schollwoeck, Rev. Mod. Phys. 77, 259 (2005).
[6] X.Q. Wang, T. Xiang, Phys. Rev. B 56, 5061 (1997).
[7] A. Drzewiński, A. Maciołek, A. Barasiński, S. Diet-

rich, Phys. Rev. E 79, 041145 (2009).
[8] A. Barasiński, P. Sobczak, A. Drzewiński,

G. Kamieniarz, A. Bieńko, J. Mroziński, D. Gatteschi,
Polyhedron 29, 1485 (2010).

[9] P. Sobczak, A. Barasiński, A. Drzewiński,
G. Kamieniarz, J. Kłak, A. Bieńko, J. Mroziński,
Polyhedron 28, 1838 (2009).

[10] J. Martinez-Lillo, D. Armentano, G. De Munno,
W. Wernsdorfer, J.M. Clemente-Juan, J. Krzystek,
F. Lloret, M. Julve, J. Faus, Inorg. Chem. 48, 3027
(2009).


