14th Czech and Slovak Conference on Magnetism, Košice, Slovakia, July 6–9, 2010

${ m CuBr_2(C_{10}H_8N_2)-S=1/2}$ Two-Dimensional Rectangular Heisenberg Antiferromagnet

E. ČIŽMÁR^a, M. KAJŇAKOVÁ^a, A. ORENDÁČOVÁ^a, M. ORENDÁČ^a, A. FEHER^a, A.G. ANDERS^b,

J.-H. $PARK^{c,d}$ and M.W. $MEISEL^c$

^aCentre of Low Temperature Physics, P.J. Šafárik University, Park Angelinum 9, SK-04154 Košice, Slovakia
^bInstitute for Low Temperature Physics and Engineering, Lenin Av. 47, 310164 Kharkov, Ukraine

^cNational High Magnetic Field Laboratory, Tallahassee, FL 32310-3706, USA

^dDepartment of Physics and Center for Condensed Matter Sciences, University of Florida

Gainesville FL 32611-8440, USA

Magnetic susceptibility and X-band electron spin resonance study of a two-dimensional Heisenberg antiferromagnetic system CuBr₂(bipy), where bipy = $C_{10}H_8N_2$ is 4,4'-bipyridyl, has been performed in the temperature range from 300 K down to 2 K. A rhombic anisotropy of the *g*-factor was obtained from X-band EPR measurements with $g_x = 2.037$, $g_y = 2.100$ and $g_z = 2.219$. The temperature dependence of the magnetic susceptibility with a round maximum observed at 28 K suggests antiferromagnetic type of short-range order. No signature of the magnetic long-range order in studied compound was observed. The comparison of the magnetic susceptibility data with a two-dimensional rectangular Heisenberg model yields the values of intralayer exchange couplings $J/k_B = -47$ K and $J'/k_B = -9.4$ K.

PACS numbers: 75.30.Et, 75.50.Ee, 76.30.-v

1. Introduction

The two-dimensional quantum Heisenberg antiferromagnets (2D QHAF) with spin S = 1/2 have been extensively investigated mainly in connection with their relevance to the parent compounds of cuprate superconductors and important role of intralayer antiferromagnetic interactions in pairing mechanisms [1]. In the case of the ideal 2D QHAF on a square lattice, the magnetic long--range order is suppressed by zero-point fluctuations at any finite temperature [2]. Related magnetic systems as rectangular HAF system (formed by chains with intrachain interaction J and interchain J', $0 \leq J'/J \leq 1$) described by the Hamiltonian

$$H = -J \sum_{i=1}^{n} \sum_{j=1}^{n} \left(S_{i,j} S_{i+1,j} + \alpha S_{i,j} S_{i,j+1} \right), \qquad (1)$$

where $\alpha = J'/J$, represents the model system to investigate the crossover from 2D HAF with the Néel ordered ground state to one-dimensional spin-chain system with disordered ground state [3].

This work is devoted to the study of magnetic properties of a material from the class of $\text{CuX}_2(\text{bipy})$, where bipy = $\text{C}_{10}\text{H}_8\text{N}_2$ is 4,4'-bipyridyl and X = Cl, Br [4, 5], which belong to prototypical S = 1/2 rectangular HAF systems. The material $\text{CuBr}_2(\text{bipy})$ crystallizes in a monoclinic lattice (space group C2/m) and represents structurally a system with rectangular covalent layers formed in *bc* plane. Octahedral coordination of S = 1/2 Cu(II) ions is formed by four bromine ions and two nitrogen ions with a rhombic distortion due to the Jahn–Teller effect with two Cu–Br (3.195 Å) bonds longer than the other two Cu–Br (2.442 Å) and two Cu–N (2.075 Å) bonds [4].

2. Experimental

The electron spin resonance (ESR) experiment was performed in a home-made X-band ESR spectrometer with a low-temperature cavity resonator, where the absorption signal is measured directly. 2,2-diphenyl-1--picrylhydrazyl (DPPH) was used as a g-marker. The magnetic susceptibility was studied in the temperature range from 2 K to 300 K using a commercial SQUID magnetometer. The background signal from the gelatin capsule and diamagnetic contribution of the sample, $\chi_{\text{DIA}} = -1.987 \times 10^{-9} \text{ m}^3 \text{ mol}^{-1}$, estimated from the Pascal constants [6] were subtracted from the raw susceptibility data. The ESR and magnetic measurements were carried out on powdered samples.

3. Results and discussion

The ESR spectrum obtained at 4.2 K and 10.27 GHz with asymmetric shape typical for a number of randomly oriented crystallites with rhombic symmetry of g--tensor was analyzed using ESR spectra simulation package EasySpin [7]. The best fit to the experimental data using a least-squares method (Fig. 1) was obtained for $g_x = 2.037, g_y = 2.100$ and $g_z = 2.219$ and the halfwidth of the resonance line $\Delta B = 7.2$ mT. The observed rhombic anisotropy of the g-tensor is typical for a structural distortion of the coordination octahedron as shown by structural data. It is characterized by the presence of an unpaired electron in $d_{x^2-y^2}$ orbital, which has lobes oriented along Cu–N bonds and two shorter Cu–Br bonds. The exchange paths create magnetic rectangular lattice in the *bc* plane, however, exchange coupling is expected to be weaker along the b axis with significantly longer superexchange pathway (Cu–bipy–Cu) than that along the c axis (Cu–Br₂–Cu).

Fig. 1. Powder ESR spectrum of CuBr₂(bipy) measured at 4.2 K and 10.27 GHz (circles). The solid line represents the best fit to the experimental data using ESR spectra simulation package EasySpin [7] with $g_x = 2.037$, $g_x = 2.100$ and $g_x = 2.219$ and the halfwidth of the resonance line $\Delta B = 7.2$ mT.

The temperature dependence of the magnetic susceptibility of $\text{CuBr}_2(\text{bipy})$ measured at 100 mT (Fig. 2) is characterized by the presence of a round maximum at 28 K and a Curie-like tail at the lowest temperatures, which is usually attributed to the intrinsic magnetic impurities (edge spins, fragments) in powdered samples. No difference between the magnetic response of the field--cooled and zero-field-cooled sample was observed indicating that no transition to the long-range ordered state occurs down to 2 K in $\text{CuBr}_2(\text{bipy})$. Using the Curie–Weiss model to fit the magnetic susceptibility data in the region 100–300 K yields the Curie temperature $\Theta = -43$ K and g = 2.13.

Fig. 2. Magnetic susceptibility of $\text{CuBr}_2(\text{bipy})$ measured at 100 mT. The solid line represents the fit of the rectangular lattice model [8] to the experimental data (circles), including the contribution of intrinsic paramagnetic impurities to the low temperature tail. The best agreement was obtained for the ratio $\alpha = 0.2$ with $J/k_{\rm B} = -47$ K and g = 2.04.

Since there is no analytical expression available in literature for the susceptibility of a rectangular lattice, equations derived from the Monte Carlo simulations of the system described by Eq. (1) by Butcher et al. [8] were adopted to analyze the experimental data. The comparison of our data to the Monte Carlo simulations suggested the ratio $\alpha = 0.2$ as appropriate for the description of magnetic susceptibility of $CuBr_2(bipy)$. The best agreement of this model with the experimental data, including the contribution of 2.5% of intrinsic paramagnetic impurities described by Curie law, was obtained for $J/k_{\rm B}$ = $-47~{\rm K}$ (yielding $J'/k_{\rm B}$ = $-9.4~{\rm K}$ for α = 0.2)and g = 2.04 as shown in Fig. 2. This result suggests the presence of a spatially anisotropic exchange coupling in $CuBr_2(bipy)$ as expected from the crystal structure and local electronic configuration of Cu(II) ions.

4. Conclusion

In conclusion, we performed spectroscopic and magnetic studies of 2D HAF CuBr₂(bipy). The analysis of experimental data reveals the presence of 2D spatially anisotropic (rectangular) magnetic lattice with the ratio of intralayer exchange couplings $\alpha = J'/J = 0.2$ and strong dominant exchange coupling $J/k_{\rm B} = -47$ K along Cu-Br₂-Cu superexchange pathway. The influence of the interlayer exchange coupling on the presence of a long-range order at very low temperatures is the subject of further specific heat studies in the millikelvin temperature range.

Acknowledgments

This work was supported by projects Nos. APVV--VVCE-0058-07, APVV-0006-07, VEGA 1/0078/09, and NSF DMR-0701400.

References

- M. Havilio, A. Auerbach, *Phys. Rev. Lett.* 83, 4848 (1999); K. Kuroki, H. Aoki, *Phys. Rev. B* 60, 3060 (1999).
- [2] N. Mermin, H. Wagner, *Phys. Rev. Lett.* 17, 1133 (1966).
- [3] Y.J. Kim, R.J. Birgenau, Phys. Rev. B 62, 6378 (2000).
- [4] N. Masciocchi, P. Cairati, L. Carlucci, G. Mezza, G. Ciani, A. Sironi, J. Chem. Soc., Dalton Trans., 2739 (1996).
- [5] E. Čižmár, M. Kajňaková, M. Orendáč, A. Oredáčová, A. Feher, T. Papageorgiou, *Czech. J. Phys.* 54, D555 (2004).
- [6] O. Kahn, Molecular Magnetism, Wiley, New York 1985.
- [7] S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006).
- [8] R.T. Butcher, C.P. Landee, M.M. Turnbull, F. Xiao, *Inorg. Chim. Acta* **361**, 3654 (2008).