

\[\text{CuBr}_2(\text{C}_10\text{H}_8\text{N}_2) \rightarrow S = 1/2 \text{ Two-Dimensional Rectangular Heisenberg Antiferromagnet} \]

E. Čižmára, M. Kajňakováa, A. Orendáčováa, M. Orendáča, A. Fehera, A.G. Andersb, J.-H. Parkc,d and M.W. Meiselc

aCentre of Low Temperature Physics, P.J. Šafárik University, Park Angelinum 9, SK-04154 Košice, Slovakia
bInstitute for Low Temperature Physics and Engineering, Lenin Av. 47, 310164 Kharkov, Ukraine
cNational High Magnetic Field Laboratory, Tallahassee, FL 32310-3706, USA
dDepartment of Physics and Center for Condensed Matter Sciences, University of Florida
Gainesville FL 32611-8440, USA

Magnetic susceptibility and X-band electron spin resonance study of a two-dimensional Heisenberg antiferromagnetic system \(\text{CuBr}_2(\text{bipy}) \), where bipy = \(\text{C}_10\text{H}_8\text{N}_2 \) is 4,4′-bipyridyl, has been performed in the temperature range from 300 K down to 2 K. A rhombic anisotropy of the \(g \)-factor was obtained from X-band EPR measurements with \(g_x = 2.037 \), \(g_y = 2.100 \) and \(g_z = 2.219 \). The temperature dependence of the magnetic susceptibility with a round maximum observed at 28 K suggests antiferromagnetic type of short-range order. No signature of the magnetic long-range order in studied compound was observed. The comparison of the magnetic susceptibility data with a two-dimensional rectangular Heisenberg model yields the values of intralayer exchange couplings \(J/k_B = -47 \) K and \(J'/k_B = -9.4 \) K.

PACS numbers: 75.30.Et, 75.50.Ee, 76.30.–v

1. Introduction

The two-dimensional quantum Heisenberg antiferromagnets (2D QHAF) with spin \(S = 1/2 \) have been extensively investigated mainly in connection with their relevance to the parent compounds of cuprate superconductors and important role of intralayer antiferromagnetic interactions in pairing mechanisms [1]. In the case of the ideal 2D QHAF on a square lattice, the magnetic long-range order is suppressed by zero-point fluctuations at ideal 2D QHAF on a square lattice, the magnetic long-range order in studied compound was observed. The comparison of the magnetic susceptibility with a two-dimensional rectangular Heisenberg model yields the values of intralayer exchange couplings \(J/k_B = -47 \) K and \(J'/k_B = -9.4 \) K.

2. Experimental

The electron spin resonance (ESR) experiment was performed in a home-made X-band ESR spectrometer with a low-temperature cavity resonator, where the absorption signal is measured directly. 2,2-diphenyl-1-picrylhydrazyl (DPPH) was used as a \(g \)-marker. The magnetic susceptibility was studied in the temperature range from 2 K to 300 K using a commercial SQUID magnetometer. The background signal from the gelatin capsule and diamagnetic contribution of the sample, \(\chi_D = -1.987 \times 10^{-9} \) m\(^3\) mol\(^{-1}\), estimated from the Pascal constants [6] were subtracted from the raw susceptibility data. The ESR and magnetic measurements were carried out on powdered samples.

3. Results and discussion

The ESR spectrum obtained at 4.2 K and 10.27 GHz with asymmetric shape typical for a number of randomly oriented crystallites with rhombic symmetry of \(g \)-tensor was analyzed using ESR spectra simulation package EasySpin [7]. The best fit to the experimental data using a least-squares method (Fig. 1) was obtained for \(g_x = 2.037 \), \(g_y = 2.100 \) and \(g_z = 2.219 \) and the halffield of the resonance line \(\Delta B = 7.2 \) mT. The observed rhombic anisotropy of the \(g \)-tensor is typical for a structural distortion of the coordination octahedron as shown by structural data. It is characterized by the presence of an unpaired electron in \(d_{x^2-y^2} \) orbital, which has lobes oriented along Cu–N bonds and two shorter Cu–Br bonds. The exchange paths create magnetic rectangular lattice in the \(bc \) plane, however, exchange coupling is expected to be weaker along the \(b \) axis with significantly lower superexchange pathway (Cu–bipy–Cu) than that along the \(c \) axis (Cu–Br\(_2\)–Cu).

\((973) \)
Fig. 1. Powder ESR spectrum of CuBr$_2$(bipy) measured at 4.2 K and 10.27 GHz (circles). The solid line represents the best fit to the experimental data using ESR spectra simulation package EasySpin [7] with \(g_x = 2.037, g_y = 2.100 \) and \(g_z = 2.219 \) and the halfwidth of the resonance line \(\Delta B = 7.2 \text{ mT} \).

The temperature dependence of the magnetic susceptibility of CuBr$_2$(bipy) measured at 100 mT (Fig. 2) is characterized by the presence of a round maximum at 28 K and a Curie-like tail at the lowest temperatures, which is usually attributed to the intrinsic magnetic impurities (edge spins, fragments) in powdered samples. No difference between the magnetic response of the field-cooled and zero-field-cooled sample was observed indicating that no transition to the long-range ordered state occurs down to 2 K in CuBr$_2$(bipy). Using the Curie-Weiss model to fit the magnetic susceptibility data in the region 100–300 K yields the Curie temperature \(\Theta = -43 \text{ K} \) and \(g = 2.13 \)).

Since there is no analytical expression available in literature for the susceptibility of a rectangular lattice, equations derived from the Monte Carlo simulations of the system described by Eq. (1) by Butcher et al. [8] were adopted to analyze the experimental data. The comparison of our data to the Monte Carlo simulations suggested the ratio \(\alpha = 0.2 \) as appropriate for the description of magnetic susceptibility of CuBr$_2$(bipy). The best agreement of this model with the experimental data, including the contribution of 2.5% of intrinsic paramagnetic impurities described by Curie law, was obtained for \(J/k_B = -47 \text{ K} \) (yielding \(J'/k_B = -9.4 \text{ K} \) for \(\alpha = 0.2 \)) and \(g = 2.04 \) as shown in Fig. 2. This result suggests the presence of a spatially anisotropic exchange coupling in CuBr$_2$(bipy) as expected from the crystal structure and local electronic configuration of Cu(II) ions.

4. Conclusion

In conclusion, we performed spectroscopic and magnetic studies of 2D HAF CuBr$_2$(bipy). The analysis of experimental data reveals the presence of 2D spatially anisotropic (rectangular) magnetic lattice with the ratio of intralayer exchange couplings \(\alpha = J'/J = 0.2 \) and strong dominant exchange coupling \(J/k_B = -47 \text{ K} \) along Cu–Br–Cu superexchange pathway. The influence of the interlayer exchange coupling on the presence of a long-range order at very low temperatures is the subject of further specific heat studies in the millikelvin temperature range.

Acknowledgments

This work was supported by projects Nos. APVV-VVCE-0058-07, APVV-0006-07, VEGA 1/0078/09, and NSF DMR-0701400.

References