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Quantum transfer matrix technique and numerically exact diagonalization method are applied to the
Heisenberg spin systems to model ring-shaped molecules. Two cases are investigated: (i) a dozen of S = 1 spins
with additional biquadratic exchange and (ii) a dimetallic molecule Cr7Cd, where it is assumed that exchange
anisotropy is determined in a local coordination system. In the latter case the calculated susceptibility is compared
with experimental results.

PACS numbers: 75.40.Cx, 75.40.Mg

1. Introduction
Molecular-based nanomagnets are important in funda-

mental physics and are good candidates for applications
in the domain of magnetic storage, molecular spintronics
and quantum computing [1, 2]. Relatively not so large
dimensions of eigenproblems make possible to apply ex-
act (at least numerically) methods to quite complicated
models [3, 4]. In this communication we present two
model Hamiltonians with results obtained by two differ-
ent methods.

At first we study influence of biquadratic exchange on
the ground state energy and ordering of excited levels
in the case of a dodecanuclear ring of spins S = 1 in
the presence of single-ion anisotropy. Hence, the model
Hamiltonian is as follows:

H1 = −
12∑

i=1

JSi ·Si+1 + K (Si ·Si+1)
2 −D(Sz

i )
2. (1)

The second non-perturbative method applied is based
on the so-called quantum transfer matrix (QTM) [3, 4].
In this paper this technique is used to calculate the mag-
netic susceptibility of the Cr7Cd dimetallic ring (S = 3/2
for chromium ions, Cd is a non-magnetic substitute)
[5, 6]. We use the anisotropic Hamiltonian introduced
by Piligkos et al. [7]:

H2 =
6∑

i=1

(
JSi ·Si+1 + SiRDlR

−1Si+1

)

+
7∑

i=1

[
D(Sz

i )2 − gµBB (Sz
i cos θ + Sx

i sin θ)
]
, (2)

where θ is the angle between the magnetic field B and the
z axis, Dl is a diagonal matrix (Dxx

l = Dyy
l = −Dzz

l /2 =
−d) describing exchange anisotropy in local coordination
system and R is a proper rotation matrix [7].

2. Results
Methods described in the previous paper [4] have been

modified to include the additional biquadratic term. We
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have calculated the basis of orthonormal states classified
according to the total spin S, the magnetization M and
a label k with 0 ≤ |k| ≤ 6 playing the role of a wave
number [4]. For k = 0, 6 an additional label ±, describ-
ing symmetry under the reflection j ↔ (13 − j), can be
introduced. In this basis, for the moderate values of the
parameter D, the mean values of S2 are very close to the
exact eigenvalues, so that we can still group the energy
levels as the multiplets of the (approximate) total spin
and states in a given S-multiplet will be denoted by a
pair (M, k±) or (M, |k|) for 0 < |k| < 6.

Fig. 1. Energy levels of the states S = 10, 11, 12 as a
function of the anisotropy D for K = 0.1 and J = 1.

At first we have analysed the ordering of the lowest
lying energy levels for J = 1 and K = 0.1 (see Fig. 1).
In the isotropic limit (D = 0) the non-zero biquadratic
exchange modifies this order: the second excited state
has S = 10, whereas for K = 0 three consecutive excited
levels have S = 11 with k = 1, 2, 3 [3].

The field-induced changes of the ground state have
been analysed for antiferromagnetic exchange (J = −1).
The degeneracy of each S-multiplet is lifted by an ex-
ternal magnetic field B > 0 due to the Zeeman term
gµBBM : the lowest lying state is the singlet with
M = −S. As the external field is increased from B = 0,
the ground state switches to S = 1, 2, . . . , 12 for “criti-
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Fig. 2. The field-dependence of the lowest-lying states
for J = −1, D = −0.1, and K = 0.1.

cal” values of BS . For B = 0 the non-zero anisotropy D
yields splitting of S-multiplets into S + 1 levels, so the
“starting points” for each level and energy gaps between
them are changed. The energies of lowest lying states
for 0 ≥ M ≥ −7 have been plotted for D = −0.1 and
K = 0.1 (see Fig. 2). Except for the first critical value
B1 ≈ 4.96 T the crossings are observed when B is in-
creased by approximately 2.4 T: the next shown critical
values are shifted by 2.10, 2.42, 2.46, 2.48 and 2.54 T. It
means that the first energy gap is larger than predicted
by the Landé interval rule [4].

Fig. 3. Experimental (points) and numerical (lines)
values of χT for Cr7Cd. In the inset low-temperature
regime/region.

Studying the model for Cr7Cd molecule by the
QTM technique we have taken the parameters obtained
by fitting to the EPR-spectra by Pilikgos et al. [7]:
J = 16.604 K, d = −0.1525 K, D = −0.1928 K,
g = 1.98. Magnetic susceptibility data were recorded in
the 2–300 K temperature range in applied magnetic fields
of 0.1, 0.5 and 1 T (perpendicular to the direction of the
measurement) [6]. The diamagnetic correction 0.001 has

been added to the numerical results. It can be clearly
seen that we have obtained good agreement with exper-
imental results (see Fig. 3). We would like to put stress
for the results below 6 K, where distinct field-dependent
behaviour of χ is observed: our numerical results con-
firm smaller values of susceptibility for higher magnetic
field and, moreover, very well fit to the experimental re-
sults for B = 1 T below 3 K, when χT decreases almost
linearly.

3. Conclusions

This result shows the relevance of the anisotropy ef-
fects in determination of the thermodynamic and mag-
netic properties of molecular magnets. We have shown
that quite complicated models, based on the Heisenberg
Hamiltonian, of such molecules can be solved exactly and
one can fit the microscopic parameters with high preci-
sion. It should be underlined that additional terms in
the model Hamiltonians can be taken into account al-
most at no extra computational cost. Moreover, in the
QTM method no energy levels are neglected which leads
to reliable results both in low and high temperatures.
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