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Motivated by the rapid development in the synthesis of novel molecule-based magnets, we have investigated
magnetic and thermodynamic properties of mixed spin (s–S) exchange coupled chains displaying a simple linear
AB or a knotted AB2 arrangement. Approximate approach for s = 1/2 and S ≥ 5/2, treating at an intermediate
step spin S operator as a commuting variable and using the transfer matrix technique, is used. Susceptibility,
magnetization and heat capacity of both spin systems are evaluated numerically from the corresponding free
energy for S = 5/2. Uniform ferromagnetic and antiferromagnetic couplings are discussed. The procedure
reproduces the right values of saturation magnetization and the entropy content of the systems, corroborat-
ing its correctness. χT curves are shown to depend crucially on the µBH/J ratio. For zero-field heat capacity
a double-peak structure is revealed for the AB chain, whereas for the AB2 chain only one broad anomaly is observed.

PACS numbers: 75.10.Pq, 71.70.Gm, 75.30.Cr, 75.40.Cx

1. Introduction

It is well known that combining transition metal ions
with organic complexes opens rich possibilities to obtain
magnetic coordination polymers displaying a variety of
magnetic behaviors such as ferro-, antiferro-, and ferri-
magnetism, canted antiferromagnetism and spin glass [1].
A distinct class is formed by the compounds with chain-
-like arrangements of spin carriers. From the chemical
point of view they can be subdivided into homometal-
lic [2], bimetallic [3], and heterometallic [4] chain struc-
tures. Moreover, the metal–radical hybrid strategy has
resulted in several heterospin chain compounds [5], of
which some show a 1D ferrimagnetic behavior [6] mod-
eled by alternating spin chains [7]. Beside the strictly
linear structures with unit cells of AA or AB type, both
inorganic [8] and organic [9] compounds displaying the
quasi 1D structures with the AB2 or AB1B2 unit cell
topologies have been reported.

Theoretical studies of such one-dimensional spin struc-
tures have been successfully trying to keep pace with the
rapid development of chemical synthesis. The seminal re-
sult by Seiden [7] providing an exact formula for the zero-
-field susceptibility of the quantum-classical (AB) spin
alternating chain has triggered further theoretical work
on chain-like structures. At the end of the eighties his
work was generalized to account for arbitrary spin quan-
tum numbers [10] or even, drawing from the same prin-
ciples, a model was proposed where whole quantum sub-
systems alternate with classical spins [11]. The AB2 type
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chains have also been extensively studied either through
the Hubbard Hamiltonian [12], exact diagonalization or
quantum Monte Carlo methods [13], exact analytical
approach based on the generalized decoration–iteration
map [14], the transfer matrix technique for Ising-like in-
teractions [15], or field theory methods [16].

2. Approach

The approximate approach goes along the lines devel-
oped in [17] to calculate the susceptibility for a spin al-
ternating chain (AB type). Later it was generalized to
account for the local anisotropy [18] and used to simu-
late the magnetization for two molecular magnets based
on octacyanotungstate and lanthanide ions. It is easy
to reformulate it so that it could be applied for spin al-
ternating chains with AB2 topology defined by the spin
Hamiltonian

Ĥ = −J

N∑

i=1

ŝi

(
Ŝ1i + Ŝ2i + Ŝ1i+1 + Ŝ2i+1

)

+µBH

N∑

i=1

[
G

(
Ŝz1i + Ŝz2i

)
+ gŝzi

]
,

where g and G denote the Landé factors of the corre-
sponding spins. The main difference is that the elements
of transfer matrix T are taken between the eigenstates
of operators Σ̂i and Σ̂i+1 corresponding, respectively, to
sums Ŝ1i + Ŝ2i and Ŝ1i+1 + Ŝ2i+1 of two successive cou-
ples of spins S. In the thermodynamic limit (N → ∞)
the partition function and the corresponding free en-
ergy is given by the largest eigenvalue of T : Z ∼= λN

max,
F ∼= −β−1N ln λmax. The magnetization, susceptibility,
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heat capacity, and entropy were calculated as appropriate
derivatives of the free energy. The procedure has been
encoded in a Mathematica7.0 notebook.

3. Results

We tested the procedure by comparing the magnetiza-
tion obtained for noninteracting spins (J = 0) to the cor-
responding sum of the Brillouin functions for an array of
spin numbers S ≥ 5/2 and magnetic field values. In the
case of the AB chain a perfect agreement was found [18].
For the AB2 chain the relative deviation is higher but
does not exceed 6%. The calculated field dependence
of isothermal magnetization was found to reproduce cor-
rectly the saturation values.

Fig. 1. χT vs. kBT/J for AB chain calculated with
G = g = 2.0, S = 5/2, and an array of magnetic
field values for ferromagnetic (red) and antiferromag-
netic (blue) coupling. A minimum is observed for anti-
ferromagnetic coupling at kBT/J ≈ 2.96.

Fig. 2. χT vs. kBT/J for AB2 chain calculated with
G = g = 2.0, S = 5/2, and an array of magnetic
field values for ferromagnetic (red) and antiferromag-
netic (blue) coupling.

Figures 1 and 2 show thermal dependence of χT for
some values of the external magnetic field, for AB and
AB2 chain, respectively. For AB chain and antiferromag-
netic coupling a minimum is observed at kBT/J ≈ 2.96.
This feature is absent for the AB2 chain.

Fig. 3. Heat capacity vs. reduced temperature for AB
chain calculated with G = g = 2.0, S = 5/2. Inset:
temperature dependence of entropy saturating at the
value of R ln(2(2S + 1)) ≈ 20.7 J mol−1 K−1.

Fig. 4. Heat capacity vs. reduced temperature for AB2

chain calculated with G = g = 2.0, S = 5/2. Inset:
temperature dependence of entropy saturating at the
value of R ln(2(2S + 1)2) ≈ 35.6 J mol−1 K−1.

In Figs. 3 and 4 the temperature dependence of the
zero-field heat capacity is shown for the AB and AB2

chains, respectively. For the AB chain a double peak
anomaly with peaks at kBT/J ≈ 0.33 and kBT/J ≈
1.33 is observed, whereas for the AB2 chain one broad
anomaly is present with the maximum at kBT/J ≈ 0.57.
The saturation values of entropy (see Insets of Figs. 3
and 4) corroborate the correctness of the approach. The
approach provides an efficient means of calculating the
magnetic and thermodynamic properties of the AB and
AB2 chains.



Approximate Approach to Magnetic and Thermodynamic Properties . . . 961

Acknowledgments

This work was partially supported by the Polish Min-
istry of Science and Higher Education within Research
Project 0087/B/H03/2008/34.

References

[1] C.M. Wynn, M.A. Gîrtu, J.S. Miller, A.J. Epstein,
Phys. Rev. B 56, 14050 (1997); C.M. Wynn, M.A.
Gîrtu, J. Zhang, J.S. Miller, A.J. Epstein, Phys.
Rev. B 58, 8508 (1998).

[2] M.S. Reis, A. Moreira dos Santos, V.S. Amaral,
P. Brando, J. Rocha, Phys. Rev. B 73, 214415 (2006).

[3] S. Yamamoto, Phys. Rev. B 69, 064426 (2004).
[4] R. Clérac, H. Miyasaka, M. Yamashita, C. Coulon,

J. Am. Chem. Soc. 124, 12837 (2002).
[5] A.S. Ovchinnikov, I.G. Bostrem, V.E. Sinitsyn,

A.S. Boyarchenkov, N.V. Baranov, K. Inoue, J. Phys.,
Condens. Matter 14, 8067 (2002).

[6] K. Fegy, D. Luneau, E. Belorizky, M. Novac,
J.-L. Tholence, C. Paulsen, T. Ohm, P. Rey, Inorg.
Chem. 37, 4524 (1998).

[7] J. Seiden, J. Phys. Lett. 44, 947 (1983).
[8] M. Matsuda, K. Kakurai, A.A. Belik, M. Azuma,

M. Takano, M. Fujita, Phys. Rev. B 71, 144411
(2005); H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo,
T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai,
T. Kuwai, H. Ohta, Phys. Rev. Lett. 94, 227201
(2005); H.H. Fu, K.L. Yao, Z.L. Liu, Phys. Rev. B
73, 104454 (2006); B. Gu, G. Su, Phys. Rev. B 75,
174437 (2007).

[9] Y. Hosokoshi, K. Katoh, Y. Nakazawa, H. Nakano,
K. Inoue, J. Am. Chem. Soc. 123, 7921 (2001);
K.L. Yao, Q.M. Liu, Z.L. Liu, Phys. Rev. B 70,
224430 (2004); K.L. Yao, H.H. Fu, Z.L. Liu, Solid
State Commun. 135, 197 (2005).

[10] R. Georges, J. Curély, J.C. Gianduzzo, Q. Xu,
O. Kahn, Y. Pei, Physica B 153, 77 (1988); J. Curély,
Ph.D. Thesis, Université de Bordeaux I, 1990.

[11] J. Curély, R. Georges, Phys. Rev. B 46, 3520 (1992).
[12] M.D. Coutinho-Filho, R.R. Montenegro-Filho,

E.P. Raposo, C. Vitoriano, M.H. Oliveira, J. Braz.
Chem. Soc. 19, 232 (2008).

[13] S. Yamamoto, J. Ohara, Phys. Rev. B 76, 014409
(2007); N.B. Ivanov, Condens. Matter Phys. 12, 435
(2009).

[14] L. Čanová, J. Strečka, M. Jaščur, J. Phys., Condens.
Matter 18, 4967 (2006).

[15] H.H. Fu, K.L. Yao, Z.L. Liu, J. Magn. Magn. Mater.
305, 253 (2006).

[16] E.P. Raposo, M.D. Coutinho-Filho, Phys. Rev. B 59,
14384 (1999).

[17] M. Verdaguer, A. Gleizes, J.P. Renard, J. Seiden,
Phys. Rev. B 29, 5144 (1984).

[18] R. Pełka, M. Bałanda, P. Przychodzeń, K. Tomala,
B. Sieklucka, T. Wasiutyński, Phys. Status Solidi C
3, 216 (2006); P. Przychodzeń, K. Lewiński, R. Pełka,
M. Bałanda, K. Tomala, B. Sieklucka, Dalton Trans.,
625 (2006).


