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By a direct derivation of the equations of motion for the spins in CsNiF3 we show that the extensively

used sine-Gordon equation fails to describe the dynamics of this 1D magnet. Instead of this soliton-bearing
model we use the spin-wave theory and, without going to the continuum approximation, calculate the dynamic
structure factors of the scattering of neutrons on CsNiF3. Complete analytical solutions for the dynamic structure
factors in the frequency domain are obtained both within the classical consideration and with quantum corrections.
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1. Introduction
For more than three decades the magnetic compound

CsNiF3 has attracted an intense attention of investiga-
tors [1]. This is mainly due to a relative simplicity of the
Heisenberg model used to describe this magnet above
the temperature 2.7 K, where it exhibits essentially 1D
behavior, and to a possible existence of nonlinear excita-
tions of spins — integrable (solitonic) or non-integrable
[2, 3], depending on whether the externally applied mag-
netic field is directed parallel or normal to the anisotropic
axis. In the work by Mikeska [4], the fully integrable sine-
-Gordon (SG) model was proposed to describe the spin
dynamics in CsNiF3. He has also calculated the “paral-
lel” dynamic structure factor (DSF) of inelastic scatter-
ing of neutrons on kink and antikink solitons of the SG
model. This and other results of the soliton theory were
soon doubted by several authors [5], first in the work [6].
However, flaws of the derivation of the classical SG equa-
tion for CsNiF3 are, to our knowledge, not directly shown
in the literature. In this contribution we thus returned
to the original model and obtained equations of motion
for the spins. We have found that the soliton theory is
a very crude approximation for CsNiF3. Especially for
large fields and low temperatures the spin-wave (SW)
theory, without going to the continuum approximation,
is much more substantiated. We have calculated, both in
the classical limit and with quantum corrections, the lon-
gitudinal (with respect to the applied field oriented per-
pendicularly to the chain of spins) and transversal DSF of
inelastic neutron scattering. As distinct from the previ-
ous calculation by Reiter [6], exact analytical expressions
in the frequency domain have been obtained for the DSF
which explicitly satisfies the detailed balance condition.
The analysis shows that the DSF peaks — the central
peak and the satellite ones — are always separated. The
static structure factor has been also found. We thus pro-
pose the most complete solution for the DSF of 1D mag-
nets of the type of CsNiF3 within the SW theory. The
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obtained formulae can be easily used for numerical cal-
culations and the comparison with experiments.

2. Failure of the SG model for CsNiF3

In a number of investigations it is assumed that above
the 3D ordering temperature the magnet CsNiF3 can be
described by the spin s = 1 Hamiltonian with a single-site
anisotropy and a ferromagnetic exchange interaction,

H = −
∑

RR′
JRR′SRSR′ + A

∑

R

(Sz
R)2 − gµBB

∑

R

Sx
R ,

(1)
where the z axis is along the chain and the Zeeman
term is produced by an applied field B. Let us con-
sider the system as being classical [4] and represent the
spin vector as S = S{cos θR cos φR, cos θR sin φR, sin θR},
where θ is the angle between the spin and its projec-
tion onto the plane xy and φ is the angle between this
projection and the axis x. The equations of motion for
the spins, i~∂Sz

R(t)/∂t = [Sz
R,H], etc., for small θ and

φl−φl+1 are then φ̇l = 2(AS/~)θl + (gµBB~)/θl cosφl +
(JS/~)(2θl−θl−1−θl+1) and θ̇l = −(JS/~)(2φl−φl−1−
φl+1) − (gµBB/~) sin φl, with the constant A changed
to A(S − 1/2)/S [7]. Only the nearest-neighbor interac-
tions have been taken into account, 2JRR′ = J(δR′,R+1 +
δR′,R−1). For low fields (gµBB ¿ 2AS) and neglecting
the last term in the second of these equations, we come
in the continuum approximation to the SG model [4],
φzz − c−2φtt = m2 sin φ, where c2 ≡ 2AJS2a2/~2,
m2 ≡ gµBB/(JSa2), and a is the lattice constant. How-
ever, it is easy to see that this approximation is very
crude. First, the continuum approximation that requires
ma ¿ 1 does not hold well for usual experimental fields
and standard parameters (A = 4.5 K, J = 23.6 K,
g = 2.4). So, for B = 5 kG, ma is about 0.2 and in-
creases with the field. On the other hand, for lower fields
one cannot assume small θ. In the Fourier transforma-
tion (FT) θn = N−1/2

∑
k exp(− ikn)θk (k = 2πn/Na,

n = 1, 2, . . . , N/2) one finds that the required condition
A À J(1−cos ka) is poorly satisfied for the experimental
wave vectors (e.g., if ak = 0.1π, only as 4 À 1, for larger
k even worse; at 0.2π both terms are about equal). The
best satisfied condition gµBB ¿ 2AS holds for B = 5 kG
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only as 1 ¿ 10. Overall, it is seen that the SG model
from which the soliton theory follows is not appropriate
for CsNiF3 at all.

3. Spin-wave approach and the dynamic
structure factors

Especially at low temperatures and large fields, with-
out going to the continuum approximation, the SW the-
ory suits better for the description of the CsNiF3 dynam-
ics. The spins preferably orient along the field B, which
allows us to linearize the problem using sin φ ≈ φ and
cos φ ≈ 1. Then in the FT we have ~Sθ̇k = −Mka2ω2

kφk

and a2Mkφ̇k = ~Sθk. The frequency and effective mass
of magnons are ω2

k = (2JS/~)2(P − cos ka)(Q − cos ka)
and Mk = (~2/2Ja2)(Q − cos ka)−1, where P = 1 +
gµBB/2JS and Q = P + A/J . For the canonical mo-
menta pik and coordinates xik (i = 1, 2, p1k + ip2k =√

2~Sθk/a, x1k + ix2k =
√

2aφk) the Hamiltonian takes
a diagonal form. It allows us to easily find the mean val-
ues and correlation functions of the generalized variables,
and consequently the DSF. We have completely solved
this problem and found exact analytical expressions for
the structure factors 〈Sα

q (t)Sα
−q〉 and their FTs, which

determine the DSF Sαα(q, ω) for 1D magnets (α = x, y,
z and q is the z component of the scattering vector).

We have found that Syy + Szz contains peaks at the
frequencies ω = ±ωq and a weak central peak (CP), and
in Sxx there are both the CP and the satellite peaks,
Sxx(q, ω) = SC(q, ω) + Ssat(q, ω), which are always sepa-
rated. The results qualitatively correspond to the exper-
iments [8], however, the condition ~ωq/kBT ¿ 1 is not
satisfied. The quantum corrections are thus necessary.

To find them, H can be expressed in the form H =
~

∑
k ωkb+

k bk, where [bk, b+
k′ ] = δkk′ , [bk, bk′ ] = 0,

〈b+
k bk〉 = nk = [exp(~ωk/kBT ) − 1]−1, and 〈bkb+

k 〉 =
nk + 1. The transfer from the classical Hamiltonian to
that of a Bose gas is realized using the following relations
between the operators: x̂k =

√
~/(2Mkωk)(bk + b+

−k)
and p̂k = i

√
Mk~ωk/2(b+

k − b−k). The time depen-
dence of the operators is given by bk(t) = bk exp(− iωt).
By this way one easily finds all the DSFs, which for
nq ≈ kBT/~ωq À 1 coincide with the classical results.
Here we give only the final formula for Sxx(q, ω) when
q > 0, ω ≥ 0 (ω = 0 gives the static structure factor):

SC (q, ω) =
2
π

(
~

4JS

)3 ∑

i

[
ωkωq−k(F + G)

×nq−k (nk + 1)
]
k=ki

|f+ (ki)|−1
,

Ssat (q, ω) =
1
π

(
~

4JS

)3 ∑

i

[
ωkωq−k(F −G)

× (nq−k + 1) (nk + 1)
]
k=ki

|f− (ki)|−1
, (2)

where ki (|ki| < π/a) are the solutions of the equation
ω − ωk + ωq−k = 0 for SC and ω − ωk − ωq−k = 0 for
Ssat. The functions F and G are defined by the relation
F±G = {[(P−cos ka)(P−cos(ka−qa))]−1/2±(P → Q)}2
and f± are determined as

f±(k) = ± sin(ka− qa)
[
P − cos(ka− qa)
Q− cos(ka− qa)

]1/2

− sin ka

[
P − cos ka

Q− cos ka

]1/2

+ (P ⇔ Q) . (3)

As distinct from the result in [6], Sxx(q, ω) automati-
cally obeys the detailed balance condition Sxx(q,−ω) =
exp(−~ω/kBT )Sxx(q, ω).

4. Conclusions
Our interest to CsNiF3 was stimulated by the frequent

assumption in the literature that the dynamics of this
1D magnet can be described by the SG model possessing
soliton solutions. In the present paper we have re-derived
the classical equations of motion for the spins and showed
that this model is not appropriate for the description of
the CsNiF3 dynamics. Much more suitable, especially for
large external fields, is the model of magnon excitations.
We have obtained complete analytical solutions for the
DSFs of inelastic neutron scattering on CsNiF3 both in
the classical consideration and with quantum corrections,
in the case when the field is perpendicular to the chain of
spins. The found solutions are suitable for numerical cal-
culations since they require only finding roots of simple
equations for the scattering wave vectors.

It should be however noted that this work is rather
of a methodical interest and does not pretend to an ex-
act description of experiments. In fact, the comparison
with the neutron scattering experiments shows notable
departures from the theory, particularly at low temper-
atures when the SW model should work well. However,
by lowering the temperature down to the 3D-ordering
temperature it is expected that the adequacy of the sim-
ple 1D model decreases. On the other hand, at higher
temperatures the model could be good but the SW ap-
proximation becomes less appropriate. We conclude that
despite the apparent simplicity of the studied system and
great interest to it an acceptable theory of its dynamics
is only to be created.
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