14th Czech and Slovak Conference on Magnetism, Košice, Slovakia, July 6-9, 2010

Magnetic Field Enhancement of the Hall Effect in Dilute Magnetic System $La_{1-x}Ce_xB_6$ ($x \le 0.1$)

A.V. BOGACH^{*a*,*}, V.V. GLUSHKOV^{*a*}, S.V. DEMISHEV^{*a*}, N.E. SLUCHANKO^{*a*}, N.YU. SHITSEVALOVA^{*b*}, V.B. FILLIPOV^{*b*} AND K. FLACHBART^{*c*}

^aA.M. Prokhorov General Physics Institute of RAS, 38, Vavilov str., Moscow, 119991, Russia

^bInstitute for Problems of Materials Science of UAS, 3, Krzhyzhanovsky Str., 03680 Kiev, Ukraine

^cCentre of Low Temperature Physics, IEP SAS and IPS FS UPJS, 04001 Košice, Slovakia

Magnetic field dependences of the Hall coefficient $R_{\rm H}$ and resistivity have been studied in detail for dilute magnetic compounds ${\rm La}_{1-x}{\rm Ce}_x{\rm B}_6$ ($x \le 0.1$) at temperatures 1.8–300 K. It was established that the regime of weak localization of charge carriers, which was observed in these heavy fermion systems below 30 K destroys gradually in magnetic field up to 8 T. Moreover, in addition to the strong negative magnetoresistance ($\Delta \rho / \rho \approx 80\%$) a drastic enhancement of the negative Hall coefficient in magnetic field ($\Delta R_{\rm H}/R_{\rm H} \approx 50\%$) has been deduced at liquid helium temperatures. The results of comprehensive analysis contradict the predictions of Kondo-impurity approach for this archetypal strongly correlated electron system in the dilute impurity limit. An alternative interpretation of ${\rm La}_{1-x}{\rm Ce}_x{\rm B}_6$ properties is developed on the basis of spin-polaron approach, Pauli paramagnetism and the density of states renormalization effects at low temperatures.

PACS numbers: 72.15.Gd

1. Introduction

Recent discovery of quantum critical behavior in heavy fermion solid solutions $La_{1-x}Ce_xB_6$ in the range of $x \leq$ 0.6 [1] has brought renewed interest to study unusual properties of these strongly correlated electron systems. Authors in [1] interpreted the experimental results in frame of the Kondo-impurity approach and pointed out that special attention should be paid to the low concentration limit $x \leq 0.1$. At the same time the results of very recent research of resistivity, thermopower, low field Hall coefficient and magnetic susceptibility studies of $La_{1-x}Ce_xB_6$ ($x \leq 0.1$) [2] contradict the predictions of Kondo-impurity approach for these archetypal strongly correlated electron systems in low impurity limit. Contrarywise, all experimental results obtained in [2] for cerium based magnetic systems $La_{1-x}Ce_xB_6$ ($x \le 0.1$) were successfully interpreted in terms of the spin-polaron approach, developed earlier for the dense magnetic system CeB_6 [3]. To verify this approach for dilute compounds $La_{1-x}Ce_xB_6$ ($x \le 0.1$) in detail it is promising to investigate charge transport anomalies in $La_{1-x}Ce_xB_6$ in strong magnetic fields.

2. Results and discussion

To shed more light on the nature of many-body states in the metallic $La_{1-x}Ce_xB_6$ matrix, the precision measurements of magnetoresistance and Hall effect have been carried out on high-quality single crystals of dilute magnetic substitutional solid solutions $La_{1-x}Ce_xB_6$ ($x \le 0.1$) in a wide temperature range 1.8–300 K in strong magnetic fields up to 80 kOe. The analysis of the resistivity behavior of $\text{La}_{1-x}\text{Ce}_x\text{B}_6$ ($x \leq 0.1$) in magnetic field reveals that the weak localization regime observed

Fig. 1. Magnetic field dependences of magnetoresistance $\Delta \rho / \rho(H^2)$ of La_{1-x}Ce_xB₆ for x = 0.03 (a) and 0.1 (b).

in these dilute magnetic systems at T < 30 K [2] depresses drastically with H elevation above 20 kOe, resulting to the appearance of strong negative magnetoresistance ($\Delta \rho / \rho \approx 80\%$). Figure 1 shows typical magnetic field dependences of the magnetoresistance $\Delta \rho / \rho (H^2)$ for La_{1-x}Ce_xB₆ compounds with x = 0.03 and 0.1, correspondingly. The most appropriate interpretation of such negative quadratic magnetoresistance $-\Delta \rho / \rho \sim H^2$ (Fig. 1) was developed and verified earlier for dense mag-

^{*} corresponding author; e-mail: alex@lt.gpi.ru

Fig. 2. Temperature dependences of the Hall coefficient $R_{\rm H}(T)$ of ${\rm La}_{1-x}{\rm Ce}_x{\rm B}_6$ at different magnetic fields for x = 0.03 (a) and 0.1 (b).

Fig. 3. Magnetic field dependences of the Hall coefficient $R_{\rm H}(H)$ of ${\rm La}_{1-x}{\rm Ce}_x{\rm B}_6$ at different temperatures in the range 2–50 K for x = 0.03 (a) and 0.1 (b).

netic system CeB₆ [3] within the framework of the Yosida approach [4], and seems to be efficient for dilute magnetic alloys $La_{1-x}Ce_xB_6$ as well.

Following to the Hall effect studies of $\text{La}_{1-x}\text{Ce}_x\text{B}_6$ in low magnetic fields [2] the investigation of the Hall coefficient was developed in present studies in the range $H \leq 80$ kOe. A strong enhancement of the Hall effect in magnetic field both for x = 0.03 (Fig. 2a, 3a) and 0.1 (Fig. 2b, 3b) at liquid helium temperatures was established evidently. The increase of the negative values of $R_{\rm H}(H)$ is almost linear in magnetic field (Fig. 3) and it reaches an amplitude $\Delta R_{\rm H}/R_{\rm H} \approx 50\%$ when H increases up to 80 kOe at temperature $T \approx 2$ K. Resulting from the strong influence of magnetic field on the resis-

tivity (Fig. 1, see also [2]) and on the Hall coefficient (Figs. 2, 3), a drastic elevation of the Hall mobility values $\mu(H) = R_{\rm H}(H)/\rho(H)$ is observed with an enhancement factor $\mu(H)/\mu(0) = 5 \div 8$ at 2 K in magnetic field of 80 kOe. It is needless to point out that these experimental results as well as the data of [2] obtained for $La_{1-x}Ce_xB_6$ solid solutions with $x \leq 0.1$ cannot be interpreted even qualitatively in terms of the skew-scattering and Kondo-lattice models [5, 6]. On the contrary, we suppose that present experimental data together with data of [2] retrieve sufficient interpretation in terms of the model, developed earlier for the dense magnetic system CeB_6 and based on spin-polaron approach, Pauli paramagnetism and DOS renormalization effects at low temperatures [3]. In the framework of this model both strong negative magnetoresistance (Fig. 1) and negative Hall coefficient enhancement in magnetic field (Figs. 2, 3) observed for archetypal strongly correlated electron systems $La_{1-x}Ce_xB_6$ in low impurity limit $x \leq 0.1$ may be explained in terms of the depression of many-body states (heavy fermions) and the polarization of 5d-states in the vicinity of Ce centers in the metallic matrix of these hexaborides.

Acknowledgments

This work was supported by RFBR grant 10-02-00998-a, young scientist grant MK-3862.2009.2 and by RAS Program "Strongly correlated electrons in semiconductors, metals, superconductors and magnetic materials".

References

- S. Nakamura, M. Endo, H. Yamamoto, T. Isshiki, N. Kimura, H. Aoki, T. Nojima, S. Otani, S. Kunii, *Phys. Rev. Lett.* 97, 237204 (2006).
- [2] N.E. Sluchanko, A.V. Bogach, V.V. Glushkov, S.V. Demishev, V.Yu. Gon'kov, A.V. Kuznetsov, N.A. Samarin, V.B. Filipov, N.Yu. Shitsevalova, J. Phys., Conf. Ser. 150, 042187 (2009).
- [3] N.E. Sluchanko, A.V. Bogach, V.V. Glushkov, S.V. Demishev, V.Yu. Ivanov, M.I. Ignatov, A.V. Kuznetsov, N.A. Samarin, A.V. Semeno, N.Yu. Shitsevalova, J. Exp. Theor. Phys. 104, 120 (2007).
- [4] K. Yosida, *Phys. Rev.* **107**, 396 (1957).
- [5] P. Coleman, P.W. Anderson, T.V. Ramakrishnan, *Phys. Rev. Lett.* 55, 414 (1985).
- [6] M. Hadzic-Leroux, A. Hamzic, A. Fert, P. Haen, F. Lapierre, O. Laborde, *Europhys. Lett.* 1, 579 (1986).