14th Czech and Slovak Conference on Magnetism, Košice, Slovakia, July 6–9, 2010

Low-Temperature Magnetic Properties of Nanocomposites Containing Superparamagnetic Fe₃C Particles

B. DAVID^{a,*}, O. SCHNEEWEISS^a, E. ŠANTAVÁ^b AND I. MORJAN^c

^aInstitute of Physics of Materials, AS CR, Žižkova 22, CZ-61662 Brno, Czech Republic

^bInstitute of Physics, AS CR, Na Slovance 2, CZ-18221 Praha 8, Czech Republic

^cNational Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest, Romania

Two nanopowders containing superparamagnetic Fe_3C particles, superparamagnetic Fe_3O_4/γ - Fe_2O_3 particles and carbon black phase were synthesised by the method of laser-induced homogeneous pyrolysis of gaseous precursors. Both were characterised by X-ray diffraction, Mössbauer spectrometry and standard magnetic measurements. The mean crystallite size of Fe_3C was 3 nm for the first sample and 10 nm for the second sample. Mössbauer spectra measured at 27 K and zero-field cooled/field cooled curves measured down to 4 K are reported.

PACS numbers: 81.07.Wx, 75.50.Bb, 75.75.-c

1. Introduction

Among gas phase synthesis methods, the laser-induced homogeneous pyrolysis is a very powerful and versatile tool for the creation of nanoparticles with various chemical compositions and diameters ranging from a few nanometers to about 50 nm [1]. It has been demonstrated in our previous reports that this method can provide nanopowders with dominant Fe₃C content [2–4].

In the present paper we study samples containing superparamagnetic Fe_3C and $\text{Fe}_3\text{O}_4/\gamma$ -Fe₂O₃ particles, i.e. with thermally fluctuating orientation of the particle magnetic moment (superspin) at room temperature.

2. Experimental

Two types of Fe₃C-based nanopowders were synthesised by the method of laser-induced pyrolysis of gaseous precursors [1]. The synthesis parameters for the two experiments resulting in the nanopowders labelled FCB1 and FCB3N are given in [5]. In the case of FCB1 the reactants used were Fe(CO)₅ vapour and C₂H₂ and in the case of FCB3N then NH₃ was added. SF₆ was used as a laser radiation absorber After the synthesis nanopowders were stored in ambient atmosphere.

The composition of nanopowders was studied by X-ray diffraction (XRD) on a PANalytical X'Pert Pro MPD device. The XRD pattern fitting procedure was done with TOPAS software using ICSD database and it yielded weight fraction F and mean crystallite size $d_{\rm XRD}$ for a given phase [6].

Mössbauer spectra (MS) were obtained at standard transmission geometry with ⁵⁷Co in Rh matrix. As a result of the fitting procedure done with CONFIT [7] we obtained the values of the relative spectrum area Afor a given phase and spectral component parameters: hyperfine magnetic induction $B_{\rm HF}$, quadrupole shift $\varepsilon_{\rm Q}$, quadrupole splitting $\Delta E_{\rm Q}$ and isomer shift $\delta_{\rm IS}$ (against α -Fe).

A physical properties measuring system PPMS 9 from Quantum Design was employed for low temperature magnetic measurements.

3. Results and discussion

The XRD patterns of the samples were fitted with orthorhombic cementite θ -Fe₃C (ICSD No. 16593) and magnetite Fe_3O_4 (ICSD No. 43001) [6]. The Rietveld refinement yielded in the case of the FCB1 sample for Fe₃C the values $d_{\rm XRD} = 3$ nm, F = 74 wt%, and for Fe₃O₄ the values $d_{\rm XRD} = 4$ nm, F = 26 wt% [5]. Correspondingly, in the case of the FCB3N sample for Fe₃C there were obtained the values $d_{\text{XRD}} = 10 \text{ nm}, F = 33 \text{ wt\%},$ and for Fe₃O₄ the values $d_{\text{XRD}} = 3 \text{ nm}, F = 67 \text{ wt}\%$ [5]. The presence of maghemite γ -Fe₂O₃ could not be excluded because γ -Fe₂O₃ and Fe₃O₄ have similar XRD patterns. On the other hand, well pronounced D peak at $\approx 1360 \text{ cm}^{-1}$ and G peak at $\approx 1580 \text{ cm}^{-1}$ were observed in the Raman spectra of both samples confirming so the presence of carbon black in the samples (result of the C_2H_2 decomposition). The transmission electron micrographs pictures for the samples can be found in [5].

The Mössbauer spectrum (MS) of FCB1 sample measured at 293 K was fitted with three components [8]: a narrow doublet probably of superparamagnetic Fe₃C ($\delta = 0.18 \text{ mm/s}, \Delta E_Q = 0.42 \text{ mm/s}, A = 0.36$), a broad doublet of superparamagnetic γ -Fe₂O₃ ($\delta = 0.30 \text{ mm/s}, \Delta E_Q = 0.91 \text{ mm/s}, A = 0.53$) and a superposition of three sextets ($B_{\text{HF}} = 19.2 \text{ T}, 12.3 \text{ T}, 15.9 \text{ T}; A = 0.11$). In the corresponding MS measured at 27 K (Fig. 1) the sextet of ferromagnetic Fe₃C ($B_{\text{HF}} = 24.5 \text{ T}, \varepsilon_Q =$ 0.07 mm/s, $\delta = 0.36 \text{ mm/s}, A = 0.74$) dominated the spectrum [3]. The absence of the characteristic ferromagnetic Fe₃C sextet at 293 K and its appearance at lower temperatures is the consequence of the superparamagnetism of Fe₃C nanoparticles at 293 K.

In the case of FCB3N sample the MS measured at 293 K exhibited very low absorption (the lowest value of

^{*} corresponding author; e-mail: david@ipm.cz

Fig. 1. Mössbauer spectra for the as-prepared nanopowders.

Fig. 2. ZFC and FC curves for the as-prepared nanopowders.

relative transmission was 0.994) [8]. This spectrum was fitted with the ferromagnetic Fe₃C sextet ($B_{\rm HF} = 20.5$ T, $\varepsilon_{\rm Q} = 0.01$ mm/s, $\delta = 0.19$ mm/s, A = 0.28) [7], a doublet ($\delta = 0.19$ mm/s, $\Delta E_{\rm Q} = 0.51$ mm/s, A = 0.64) and the superparamagnetic Fe₃O₄ doublet ($\delta = 0.68$ mm/s, $\Delta E_{\rm Q} = 0.70$ mm/s, A = 0.08). In the corresponding MS measured at 27 K (Fig. 1) the Fe₃C sextet ($B_{\rm HF} = 25.0$ T, $\varepsilon_{\rm Q} = 0.01$ mm/s, $\delta = 0.32$ mm/s, A = 0.42) was identified. The intense outer lines correspond to the sextets of Fe₃O₄ phase.

It is concluded that two effects strongly influenced the measured Mössbauer spectra: superparamagnetic (SPM) effect (sextet representing magnetically ordered phase collapses to doublet above the blocking temperature $T_{\rm B}$) [9] and soft bonding of Fe-based particles to the pyrolytic carbon matrix (recoilless factor f strongly increases with decreasing temperature, i.e. relative transmission at 27 K is lower than at 293 K) [10]. The curves of the zero field cooled (ZFC) and field cooled (FC) temperature dependent magnetization ($\sigma_{\rm ZFC}, \sigma_{\rm FC}$) in Fig. 2 were measured under the same conditions as for the nanopowder with nonsuperparamagnetic Fe₃C particles reported in [3]. Present $\sigma_{\rm ZFC}$ and $\sigma_{\rm FC}$ values substantially differ from those given in [3]: $\sigma_{\rm ZFC}$ exhibits a maximum (72 K for FCB1 and 67 K for FCB3N) and $\sigma_{\rm FC}$ grows upon cooling and reaches saturation below ~ 30 K. Hence present curves resemble the curves characteristic for samples with SPM particles [9, 10]. Nevertheless, due to magnetic particle interactions, they do not overlap above ~ 150 K as it happens for noninteracting SPM particles with very low $T_{\rm B}$.

It is summarized that the presence of the significant amount of superparamagnetic Fe_3C particles at room temperature was proved in the studied samples synthesized by the laser pyrolysis method for the first time.

Acknowledgments

This work was supported by the AS CR (AV 0Z20410507), the GA CR (202/08/0178), and the MYES CR (1 M6198959201).

References

- R. Alexandrescu, I. Morjan, I. Voicu, F. Dumitrache, L. Albu, I. Soare, G. Prodan, *Appl. Surf. Sci.* 248, 138 (2005).
- [2] B. David, O. Schneeweiss, N. Pizúrová, M. Klementová, P. Bezdička, R. Alexandrescu, I. Morjan, F. Dumitrache, *Surf. Interface Anal.* 38, 482 (2006).
- [3] B. David, O. Schneeweiss, M. Mashlan, E. Šantavá, J. Magn. Magn. Mater. 316, 422 (2007).
- [4] B. David, R. Zboril, M. Mashlan, T. Grygar, F. Dumitrache, O. Schneeweiss, J. Magn. Magn. Mater. 304, e787 (2006).
- B. David, O. Schneeweiss, N. Pizúrová, F. Dumitrache, C. Fleaca, R. Alexandrescu, Surf. Interface Anal. 42, 699 (2010).
- [6] ICSD Database release 2004/1, FIZ Karlsruhe, Germany; DIFFRAC^{plus} TOPAS, release 2000, Bruker AXS GmbH, Karlsruhe, Germany.
- [7] T. Žák, Y. Jirásková, Surf. Interface Anal. 38, 710 (2006).
- [8] B. David, O. Schneeweiss, F. Dumitrache, C. Fleaca, R. Alexandrescu, I. Morjan, J. Phys., Conf. Ser. 217, 012097 (2010).
- J.L. Dorman, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283 (1997).
- [10] B. David, N. Pizúrová, O. Schneeweiss, M. Klementová, E. Šantavá, F. Dumitrache, R. Alexandrescu, I. Morjan, J. Phys. Chem. Solids 68, 1152 (2007) and references therein.