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The pressure dependence of the ferromagnetic–paramagnetic phase transition temperature TC(p) is of high
interest due to its direct technological implications. The theoretical investigations of the Curie temperature TC(p)
considered in the ferromagnetic crystals have been studied employing various methods of calculations. The present
paper is devoted to its description by means of the pseudoharmonic approximation approach.
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1. Introduction
The present paper deals with the pressure influence

on the Curie temperature in ferromagnets whose effec-
tive potential of the lattice is described by the modified
Morse potential U(Rr − Rr′) given in terms of pseudo-
harmonic approximations [1]. The pressure p is applied
in the form of isotropic (hydrostatic) external force to
the whole sample and scaled with respect to the normal
(atmospheric) pressure p0 (p0 = 1.0135× 10−4 GPa).

Magnetic properties are discussed at the level of the lo-
calized spins model. The magnetic moments are situated
in the lattice sites whose distance expands or compresses
due to the thermal vibrations or the pressure compres-
sion. The exchange integral J(Rr − Rr′) as well as the
potential U(Rr−Rr′) change their values due to the dis-
tance Rr − Rr′ = R between two localized spins where
R is the equilibrium position at a given temperature T
under a given pressure p: R = R(p, T ); in particular
R0 = R(p0, T = 0).

We assume that the Curie temperature is proportional
to the exchange integral J(R) calculated by means of the
effective distance between two localized spins situated
at r and r′. The pressure effect is introduced then by
the equation of state R = R(p, TC(p)). The shape of
the relation J = J(R) is determined by the analogy to
the case when we consider the random distribution of
exchange integrals for the samples with the amorphous
structure [2].

In the methodological context the paper is a continu-
ation of the melting temperature Tm(p) calculations [3]
while the essential problem is connected with the con-
siderations concerning the Curie temperature and its de-
pendence on the pressure [4, 5].

2. The outline of the model
The effective Hamiltonian contains three terms corre-

sponding to the lattice and magnetic properties, namely
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where r, r′ stand for the sites occupied by atoms with
spins Sr; Pr stand for impulse momenta whose mass is
denoted by M .

The coupling between phonons and magnons appears
by means of the dependence of the exchange integral on
the effective distance between the positions of two local-
ized spins which are situated in the effective lattice sites,
so that the geometry of crystallographic structure and
magnetic network is the same. The pseudoharmonic ap-
proach corresponds to the description of the temperature
renormalization of the equation of state in terms of the
mean square displacements of atoms from their positions
of equilibrium. The magnetic properties are described
by the Ising model while the lattice properties are con-
sidered in the lattice potential which takes into account
the influence of the pressure due to the additional term
pV where V ∼ R3 stands for the elementary cell volume
V = V (p, T (p)).

From the physical point of view the method of pseudo-
harmonic approximation is equivalent to the averaging of
the free energy with respect to the Gaussian distribution
which is characterized by the mean square displacement
of atoms from their equilibrium positions: y = y(p, T ).

In the case of the Morse potential the pseudoharmonic
procedure leads to the equation of state (see, e.g. [1]):
r2 e2y − rey/2 = p∗ω2 where
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with the coefficient Γ interpreted as the material con-
stant and the parameter
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where Tm denotes the melting temperature.
3. The Curie temperature calculations

The Curie temperature is usually assumed as propor-
tional to the exchange integral and the qualitative TC(p)
dependence is nearly independent of the theoretical ap-
proach [5]. Taking this fact into consideration we can
assume that

TC(p)
TC(p0)

=
J(R(p), TC(p))

J(R(p0), TC(p0))
, (4)

where J(R(p), TC(p)) denotes the exchange integral de-
pendent on the pressure due to its dependence on the
distance R(p, TC(p)) between two interacting spins.
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The exchange integral dependence on R is discussed
in connection with the structure of interactions in amor-
phous materials [2]. The excellent fitting procedure for
the function J(R) is considered by Radomska and Bal-
cerzak [6] for EuTe structure. Taking into account the
analogy and profiting the experience of previous calcula-
tions [2, 6] we can see that the description of the exchange
integral in terms of the correlation functions seems to be
very convenient, particularly, in the Curie temperature
region where we can write

J(R(p)) = J0 e−
R(p)−R0

ξ (5)
with the correlation range ξ(p, TC(p)).

The quantitative agreement of our calculations with
experimental data can be obtained by means of an ap-
propriate choice of the parameter ξ = nR0 for n 6= 1. It is
describing the exchange integral dependence on the dis-
tance R(p, TC(p)) between two interacting spins in terms
of the mean square displacements of atoms from their
positions of equilibrium calculated by means of the pseu-
doharmonic approach. For this reason we fit the results
presented by (a) in Fig. 1A to the experimental points
(b) described by the curve (c) in Fig. 1A. The sufficient
agreement of the results is achieved by the parameter n
whose shape is shown in Fig. 1B.

Fig. 1. (A) The pressure dependence of the Curie tem-
perature TC(p)/TC(p0) for Ni, (a) calculated for ξ = 1,
(b) the experimental points [4], (c) fitted to the exper-
imental points by ξ = ξ(p). (Tm = 1728 K, TC(p0) =
627 K, R0 = 3.52 Å.) (B) The pressure dependence of
the correlation range ξ for the spatial distribution of
the exchange integral calculated by the best fit to ex-
perimental data.

Substituting (5) to (4) we obtain the self-consistent
equation with respect to the variable TC(p)/TC(p0) in
the form
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TC(P0)
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[
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−
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− 1

))] 1
n
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whose numerical solution obtained with respect to fitting
parameter n shown in Fig. 1B allows us to describe the
pressure dependence of the Curie temperature.

It is worthwhile to remark that the considerations lead-
ing to the equation of state are valid for nonmagnetic ma-
terials. The equation can be used for ferromagnets when
we describe it in the paramagnetic phase, i.e. T ≥ TC

so that it is sufficient for the purposes of the present
paper. Below TC(p) the model includes the coupling be-
tween lattice and magnetic component properties. We
need then an additional term in equation of state pro-
portional to J ∂J(R)

∂R 〈Sz〉2 and the proper correction of the
formulae for y parameter simultaneously where y corre-
sponds to the mean square displacement of atoms under
the pressure.

4. Conclusions
We treat the relation TC = TC(p) shown as (a) in

Fig. 1A as the reference calculations obtained in terms
of the pseudoharmonic approximation.

First of all we test the equation of state given in the
paramagnetic phase (T ≥ TC) by means of its relations
to the experimental results.

The pressure influence on the Curie temperature de-
pends on the exchange integral with respect to the dis-
tance R(p) between two interacting spins. The method
needs to know the relation J = J(p,R(p)) which can be
evaluated by means of the fitting of the exchange integral
with respect to the correlation range ξ = nR0, n = n(p)
(Fig. 1B). From the physical point of view the obtained
result means that the shape of the exchange integral de-
pends on the pressure by two ways: (1) indirectly, via
the equation of state and (2) directly, via the influence of
the pressure on the elementary cell lattice constant when
the electron density connected with the lattice is taken
into account. This behaviour is explained as the result
of a competition between the decrease in the local mag-
netic moment and the increase in the magnetic exchange
integral as function of rising pressure [5]. The equiva-
lent description presented in this paper corresponds to
the interpretation connected with the correlation length
behaviour. The fitting ξ in this case leads to ξ which
is independent of p, that means, it is equivalent to the
condition ∂TC(p,R(p))/∂p = 0 recently discussed in the
literature (see, e.g. [5]).
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