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Ground-state energy is exactly calculated for the spin-1/2 Heisenberg–Ising bond alternating chain with the
Dzyaloshinskii–Moriya interaction. Under certain condition, which relates a strength of the Ising, Heisenberg
and Dzyaloshinskii–Moriya interactions, the ground-state energy exhibits an interesting nonanalytic behavior
accompanied with a gapless excitation spectrum.

PACS numbers: 05.50.+q, 05.70.Jk, 64.60.De, 75.10.Pq

1. Introduction

Quantum spin chains provide an excellent playground
for theoretical studies of collective quantum phenomena
as they may exhibit numerous exotic ground states and
quantum critical points [1]. The spin-1/2 Heisenberg–
Ising bond alternating chain, which has been originally
invented by Lieb et al. [2] and recently re-examined by
Yao et al. [3], represents a valuable example of rigor-
ously solved quantum spin chain. The present work aims
to provide a generalization of this simple but nontrivial
quantum spin model by taking into account the antisym-
metric Dzyaloshinskii–Moriya interaction.

2. Heisenberg–Ising chain

Let us consider a bond alternating chain of 2N
spins 1/2 with nearest-neighbor antiferromagnetic inter-
actions, which are alternatively of the Heisenberg and
Ising type, respectively. The total Hamiltonian of the
model under consideration is given by
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where the parameter JH(∆) denotes the XXZ Heisen-
berg interaction between 2n − 1 and 2n spins, ∆ is
an anisotropy in this interaction, and the parameter
D stands for the z component of the antisymmet-
ric Dzyaloshinskii–Moriya interaction present along the
Heisenberg bonds. Furthermore, the term 2JI denotes
the Ising interaction between 2n and 2n+1 spins and the

periodic boundary condition sα
2N+1 ≡ sα

1 (α = x, y, z) is
imposed for convenience.

First, let us eliminate from the Hamiltonian (1) the
Dzyaloshinskii–Moriya term after performing a spin co-
ordinate transformation. The spin rotation about the
z-axis by the specific angle tanϕ = D/JH, which is per-
formed at all even sites 2n (n = 1, . . . , N),
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ensures a precise mapping equivalence between the
Hamiltonian (1) and the Hamiltonian
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From here onward, one may closely follow the rigorous
procedure developed in Refs. [2, 3]. According to this, the
Hamiltonian (2) is rewritten in terms of raising and low-
ering operators in the subspace where the ground state
is, and subsequently, the Jordan–Wigner transformation
is applied to express the relevant spin Hamiltonian as a
bilinear form of the Fermi operators. The Fourier and Bo-
golyubov transformations are finally employed to bring
the Hamiltonian relevant for the ground-state properties
into the diagonal form
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where
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(4)
From Eqs. (3) and (4) one easily finds the exact result for
the ground-state energy of the antiferromagnetic spin-1/2
Heisenberg–Ising bond alternating chain (1) for N →∞:
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where E(a) =
∫ π
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1− a2 sin2 θ is the complete ellip-
tic integral of the second kind with the modulus a,
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Recall that the complete elliptic integral of the sec-
ond kind is a nonanalytic function of its modulus for
a2 = 1 − (a′)2 ≈ 1, i.e., E(a) − 1 ∝ ln a′(a′)2. The con-
dition a2 = 1 holds just if JI =

√
J2

H + D2 and hence,
one may expect nonanalytic behavior of the ground-state
energy (5) under this special constraint, which relates
a strength of the Ising, Heisenberg and Dzyaloshinskii–
Moriya interactions.

Before proceeding to a more detailed discussion of the
most interesting results, it is worthy to mention that our
exact results correctly reproduce (in an absence of the
Dzyaloshinskii–Moriya term) the results previously re-
ported by Lieb et al. [2] for the isotropic version and by
Yao et al. [3] for the anisotropic version of the antifer-
romagnetic spin-1/2 Heisenberg–Ising bond alternating
chain. For simplicity, our subsequent analysis will be re-
stricted just to a particular case of the model with the
isotropic Heisenberg interaction (∆ = 1), which exhibits
all general features notwithstanding this limitation.

3. Results and discussion

In Fig. 1 we depict the elementary excitation energy
spectrum Λk calculated from Eq. (4) for two differ-
ent values of the ratio JI/JH and several values of the
Dzyaloshinskii–Moriya anisotropy D/JH. Generally, the
excitations are gapped with exception of the particular
cases that satisfy the condition JI =

√
J2

H + D2. The
gapless excitation spectrum might be consequently found
just if JI/JH ≥ 1, which means that the Ising interaction
must be at least twice as large as the Heisenberg one. If
D/JH = 0 is assumed, the system has gapless excitation
spectrum for JI/JH = 1 in accordance with the previ-
ously published results [2, 3]. Interestingly, the gapless
excitation spectrum emerges at higher values of the ratio
JI/JH regardless of the exchange anisotropy ∆ whenever
the Dzyaloshinskii–Moriya anisotropy is raised from zero.

The three-dimensional plot of the ground-state en-
ergy (5) is depicted in Fig. 2 as a function of the ratio
JI/JH between the Ising and Heisenberg interaction, as
well as a relative strength of the Dzyaloshinskii–Moriya
anisotropy D/JH. Referring to this plot, the ground-
-state energy monotonically decreases upon strengthen-
ing the ratio JI/JH and/or the Dzyaloshinskii–Moriya

Fig. 1. Elementary excitation spectrum for several val-
ues of the Dzyaloshinskii–Moriya term D/JH, ∆ = 1
and two different values of the ratio: (a) JI/JH = 1,
(b) JI/JH = 2.

Fig. 2. Ground-state energy as a function of the
Dzyaloshinskii–Moriya anisotropy D/JH and the inter-
action ratio JI/JH for the anisotropy parameter ∆ = 1.

term D/JH. In accordance with this statement, the
ground-state energy E0/NJH = −3/4 of a system of
the isolated Heisenberg dimers, which is achieved in the
limit JI/JH → 0 and D/JH → 0, represents an upper
bound for the ground-state energy. Within the mani-
fold JI =

√
J2

H + D2, the ground-state energy exhibits
a rather striking nonanalytic behavior. Although this
weak nonanalytic behavior cannot be seen from Fig. 2, it
should manifest itself in higher derivatives of the ground-
-state energy.

4. Conclusions

In the present work, the ground-state properties of the
spin-1/2 Heisenberg–Ising bond alternating chain with
the Dzyaloshinskii–Moriya interaction have been investi-
gated using a series of exact (rotation, Jordan–Wigner,
Fourier, Bogolyubov) transformations. Exact results for
the ground-state energy and elementary excitation spec-
trum have been examined in relation with a strength of
the ratio between the Ising and Heisenberg interaction,
as well as the Dzyaloshinskii–Moriya term. The most in-
teresting finding to emerge from our study closely relates
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to a remarkable nonanalytic behavior of the ground-state
energy, which is accompanied with the gapless excitation
spectrum whenever the condition JI =

√
J2

H + D2 is met.
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