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This paper presents an exactly solvable (by applying the fractional calculus) the rheological model of
fractional dynamics of financial market conformed to the principle of no arbitrage present on financial market. The
rheological model of fractional dynamics of financial market describes some singular, empirical, speculative daily
peaks of stock market indices, which define crashes as a kind of phase transition. In the frame of the model the
plastic market hypothesis and financial uncertainty principle were formulated, which proposed possible scenarios
of some market crashes. The brief presentation of the model was made in our earlier work (and references therein).
The rheological model of fractional dynamics of financial market is a deterministic model and it is complementary
to already existing other ones; together with them it offers possibility for thorough and widespread technical
analysis of crashes. The constitutive, fractional integral equation of the model is an analogy of the corresponding
one, which defines the fractional Zener model of plastic material. The fractional Zener model is the canonical one
for modern rheology, polymer physics and biophysics concerning non-Debye relaxation of viscoelastic biopolymers.
The useful approximate solution of the constitutive equation of the rheological model of fractional dynamics of
financial market consists of two parts: (i) the first one connected with long-term memory present in the system,
which is proportional to the generalized exponential function defined by the Mittag–Leffler function and (ii) the
second one describing oscillations (e.g. beats or oscillations having two slightly shifted frequences). The shape
exponent leading the Mittag–Leffler function, defines here the order of the phase transition between bullish and
bearish states of the financial market, in particular, for recent hossa and bessa on some small, middle and large
stock markets. It happened that this solution also successfully estimated some long-term price dynamics on the
hypothetical market in United States.

PACS numbers: 89.20.−a, 89.65.−s, 89.65.Gh, 89.90.+n

1. Introduction

The bubbles and crashes are considered as unavoid-
able elements of stock market dynamics. They play a
key role for capitalistic, competitive free markets [1–4, 5].
Therefore bubbles and crashes are the natural subject of
thorough and widespread studies of economists, sociolo-
gists, psychologists and recently, econo- and sociophysi-
cists. The most fruitful seems to be the concept of the
discrete scale invariance applied to stock markets and
considering their crashes as a kind of criticality. As a
consequence the dynamics of the market within the scal-
ing region (i.e. in the region preceding a crash) can be
described by scale-free laws containing logarithmic pe-
riodicities [6–16] (and references therein). The major
achievement of the approach makes possible a forecasting
of crash times.

There are many other fruitful analogies between the
dynamics and/or stochastics of complex physical and eco-
nomical or even social systems [17–25]. The methods
and algorithms that have been explored for describing
physical phenomena become an effective background and
inspiration for very productive methods and algorithms
used in analysis of economical, in particular the financial
empirical data [16, 26].

Our concept is to consider only well developed tempo-
ral, non-exponential, speculative peaks of stock market
indices. It relates in some sense to the idea of Eliezer and
Kogan [9] (and references therein), which distinguishes
the dynamics of the market in a crashing phase, from
the one in the quiescent phase. In real market traders
may form groups which then share information and act
in coordination. This is the result of mutual interaction
between traders leading to herding; groups may trade
with each other through some centralized market proce-
dure. We take into consideration the herding effect by
way complementary to the approach already developed
by percolation models [5, 27].

The solution supplied by our rheological model of the
fractional dynamics of financial market (RMFDFM) is
complementary to the power-law superposed with log-
-periodic oscillations [2, 16]. We applied it here to de-
scribe some empirical data proceeding a crash, which
cannot be successfully handled by the latter approach.
Both approaches can constitute together a solid base for
forecasting burdened with reduced risk.

The analysis was supported by the non-Debye or
non-exponential relaxation processes observed in stress-
-strain relaxation of viscoelastic materials [28–33] as well
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as in the tick-by-tick empirical data for FUND future
contract prices traded at LIFFE London [34].

In this paper we study, by way of examples, some men-
tioned above peaks and concern recent hossa and bessa:

(i) on emerging market: the daily closings of the his-
torical Warsaw Stock Exchange (WSE) index WIG.
We can assume that the dynamics of the WSE is
typical for an emerging financial market of small
size.

(ii) Besides, we study the Deutscher Aktien Index
(DAX) as the index typical for middle stock mar-
kets and

(iii) Down Jones Industrial Average (DJIA) and SCI∗
indices as representative ones for large stock mar-
kets.

2. Non-Debye relaxation

It is important to know that the non-Debye relaxation
may arise from memory, i.e. the underlying fundamental
processes are of non-Markovian type. It was shown that
fractional calculus is quite natural way of incorporating
memory effects. The power-law kernel defining the frac-
tional relaxation equation presents a long-term memory.
The function that plays a dominating role in fractional
relaxation problems is the Mittag–Leffler (ML) function
[31]:

Eα

(
−

( | tc − t |
τ

)α)
=

∞∑
n=0

[−(| tc − t | /τ)α]n

Γ (1 + αn)
,

α > 0 , (2.1)
which is a straightforward generalisation of the exponen-
tial one (obtained for α = 1) and complementary to the
famous Tsallis q-exponent [3] (here t is time and tc is the
localization of the turning point from raising to falling
parts of the ML function while α is the shape exponent).
The ML function allows interpolation [1] between the cor-
responding stretched exponential function for short-time
limit and power-law decay for asymptotic time (when
α < 1); the former plays a crucial role in our analysis.

Before we go to financial markets, we pay our atten-
tion, for example, to the market of houses and parcels
in U.S. As it is seen in Fig. 1, empirical data proceed-
ing from this market is well fitted by the Mittag–Leffler
function (red curve) even near to the turning point (i.e.
to the point where hossa changes to bessa). The values
of parameters of ML function obtained here are as fol-
lows: the localization of the turning point (maximum) is
at tc = 231 months, i.e. at March’07, which is placed ex-
actly at the maximum of empirical data, the relaxation

∗ We chose Shanghai Composite Index intead of the Nikkei index
as the latter too much oscillates.

time τ = 95 months, the shape parameter α = 0.60.
Let us note that for α < 1 both derivatives (i.e. left- and
right-sided) of the ML function diverges at tc according to
the power law, which means that return also accordingly
diverges [1]. Hence, at tc we deal with analogy of the
first order phase transition. The corresponding predic-
tions of exponential function (green curve) and stretched
exponential one (blue curve) were also shown there for
comparison†.

Fig. 1. The median, S, of prices of houses and
parcels sold in U.S. between January 1988 and De-
cember 2008 (the unit of timescale is chosen here as
one trading month). The empirical data (marked
by dots) were downloaded from the internet address
http://www.economagic.com/ (solid curves were de-
fined in the main text).

Quite often the ML function appears both in the
stochastic and deterministic modelling of disordered sys-
tems. The canonical example of the former may be the
continuous-time random walk model (CTRW) used in the
context of a financial market (Refs. [23–34, 35], while the
latter — already mentioned above fractional relaxation
equation describing relaxation of viscoelastic materials.

3. Rheological model of fractional dynamics
of financial market

Presentation of our phenomenological, deterministic
RMFDFM consists of two stages:

(i) Formulation of a linear ordinary differential equa-
tion (LODE) of the first order; this equation de-
scribes the index relaxation on an ideal market
(considered in Sect. 3.1), i.e. only the exponential
relaxation of an auxiliary index. By term “relax-
ation” we understand here and below in the text
the relaxation both in forward and backward time-
-directions (of course, this backward relaxation of
the index is equivalent to its increase in forward
time-direction).

† For both exponential and stretched exponential functions relax-
ation time is given here by τ [Γ (1 + α)]1/α = 79 months.
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(ii) Fractional generalization of the LODE by using the
replacing transformation that changes the above
mentioned differential equation to a more general
fractional form (including, by definition, the long-
-term memory). Thus we are able to model the
non-exponential (non-Debye) relaxation of the em-
pirical index on a real market within the range of
speculative peaks. For example, the left path of the
peak can initially increase very slowly and acceler-
ates strongly toward the end of the peak, forming
singularity of the first order‡. The right paths can
have an opposite dependence on time, i.e. initially
rapidly decreases and finally very slowly. Of course,
we also consider singularities of higher orders.

These stages define the general strategy, which was
supplied by physical papers [28–30, 36–38] concerning
rheological problems. The strategy was used for descrip-
tion of the non-Debye relaxation of viscoelastic mate-
rials and constitutes the basis for developing the frac-
tional solid model (FSM). There are several versions of
FSM [28] based on the so-called “fractional elements” de-
fined by different mechanical arrangements of springs (i.e.
elastic elements) and dashpots (i.e. friction ones), which
are their fundamental structural quants. Such arrange-
ment defines the rheological (macroscopic) properties of
a solid, however several different arrangements can define
the same properties.

The RMFDFM considers spring–dashpot pair as an
analog of a single trader (investor), where spring symbol-
izes trader’s activity and dashpot his aversion to risk§. If
spring is stretched it means that investor buys stocks,
if it is contracted then stockes are sold, otherwise (when
spring leaves unchanged) the trader is waiting (or is doing
nothing). The dashpot always acts (due to the friction or
aversion to any risk) against any trader’s activity. Hence,
arrangement of spring–dashpot pairs defines a network
of investors, which forms a social cooperative structure
for a given stock market. The model is related to field
called behavioural finance since it somehow incorporates
the psychological motivation of investor’s behaviour.

In our case the transition from stage (i) to stage (ii)
means that the system under considerations changes from
an ideal and unrealistic one to a realistic, complex sys-
tem, where memory plays an essential role. This mem-
ory is defined by the integral, long-term kernel, analo-
gously as it was done in terms of the FSM (cf. Eq. (3.13)
in Sect. 3.3). By using our approach we described
well developed speculative peaks concerning recent bessa
and hossa present on small, middle and large financial
markets.

‡ We say the function has singularity of n-th order at given point
if its n-th order derivative diverges at this point but ones of all
lower orders do not.

§ This definition of trader does not exclude pathological possibil-
ities that only the spring or only the dashpot represent some
trader.

3.1. Evolution of the auxiliary index

The considerations given in this section (in particular,
concerning Eq. (3.11)) realize at the present the stage
(i) (defined at the beginning of Sect. 3), i.e. the ideal
stock market dynamics (relaxation) for given path of the
speculative peak.
3.1.1. Basic assumptions of the model

The RMFDFM is based on the following fundamental
assumptions:

A1) In the range of well-defined speculative peaks (con-
sisting of hossa and bessa paths), the dominating be-
haviour of the stock market results from traders’ activi-
ties whose strategies are based only on a direct (on-line)
observation of the market state. They are conducting
a technical analysis of dynamics of stock market indices
and the volume of the corresponding assets and under-
take decision. They are called technical traders, chartists
or noise traders. Of course, traders can mutually com-
municate without any delay (e.g. by using phones) and
exchange informations.

The reason why technical traders dominate the stock
market within the range of speculative peaks is caused,
for example, by the time limitation as decision should be
undertaken relatively quickly; there is no time for fun-
damental analysis of companies (quoted on a given stock
market) conducting by fundamental traders (fundamen-
talists or rational traders), usually operating on much
longer time horizon.

A2) For quantitative, technical analysis of the stock
market we introduce two instantaneous, non-negative
macroscopic (macroeconomic) variables X(t) and V (t) as
basic, mutually independent quantities, where the first
variable is the relative value of the stock market index
while the second one is the relative volume of trade of
those companies which constitutes this index; these time-
-dependent variables vanish only when they are equal to
their background values (as usual, variable t means the
trading time). These basic variables can be directly, on-
-line monitored by chartists; this is the principal con-
straint which must subject any basic variable.

A3) By using basic variables we are able to express any
other ones, for example, the instantaneous excess demand
U(t). This quantity, although recorded in the book of or-
ders, does not make accessible for traders. We assume it
in the form of a linear combination

U(t) = a0X(t) + b0V (t) , (3.1)
where, as usual, excess demand is a difference

U(t) def.= D(t)− S(t) (3.2)
between instantaneous demand D(t) (≥ 0) and supply
S(t) (≥ 0) (while a0 and b0 are time-independent coeffi-
cients). The relative volume of trade of stocks

V (t) def.= min[D(t), S(t)] . (3.3)
Accordingly, quantities D(t) and S(t) denote the num-
ber of calls and puts transactions for stocks, respectively,
at closing price. Let us note that the time step ∆t was
assumed here as one trading day (i.e. ∆t = 1 td) so t
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counts trading days. This discretization of time justifies
our assumption, given by Eq. (3.1), that both types of
transactions (i.e. calls and puts ones) are always counted
together (at the same time) with simultaneous observa-
tions of both basic variables.

To consider the relaxation of the auxiliary index we
complete Eq. (3.1) with the differential equation, which
shows an instantaneous, and therefore unrealistic (ideal-
ized), relation to the financial market. Namely,

A4) we can assume, in agreement with assumption A2,
that the value of each basic variable in the nearest future
is expressed by the linear combination of their current
values; hence, we can write

V (t + ∆t) + eX(t + ∆t) = c0V (t) + d0X(t) , (3.4)
where c0 and d0 are time-independent coefficients.

It is straigtforward to derive from Eq. (3.4) the follow-
ing differential equation:

dV (t)
dt

= C0V (t) + D0X(t) + E
dX(t)

dt
, (3.5)

where coefficients C0 = c0−1
∆t , D0 = d0−e

∆t are rates and
E = −e is a kind of relocation coefficient while “∆” in
Eq. (3.4) was replaced by its limited, infinitesimal oper-
ator “d”.

By combining Eqs. (3.5) and (3.1) we eliminate the
V (t) variable with Eq. (3.5) and obtain the searched
equation of ideal market dynamics in the form,

U(t) + τ0
dU(t)

dt
= G0τ0

dX(t)
dt

+ GeX(t) , (3.6)

where coefficients

τ0
def.= − 1

C0
, G0

def.= a0(1−B0E), B0 = −b0/a0 ,

Ge
def.= a0(1 + B0D0/C0) , (3.7)

have additional, rheological interpretation (see below)
since Eq. (3.6) is an analogy of the constitutive equa-
tion of the canonical rheological Zener model of plastic
material [30]. This is the reason why we derived dynam-
ics equation in such a form, by eliminating the directly
measurable variable V (t) instead of unmeasurable U(t)
one¶. As we will see, it makes possible the transition
from an ordinary to the fractional differential equation,
exactly in the same way as it was made in the modern
rheology. Indeed, the latter equation is the fundamental
one of modern rheology and in our case gives the possi-
bility to consider peaks’ non-exponential relaxation on a
real market.

Let us note that Eq. (3.6) is a generalization of the
canonical equation of the traditional economy, where
change of price per unit time is proportional to the excess
demand. However, the study of the former equation is
not the aim of this work; our aim is its further general-
ization.

¶ Though the variable V (t) is directly measurable, it strongly fluc-
tuates which makes fit by any function very doubtful.

3.2. Analogy to the standard linear solid model

Equation (3.6) defines a model which can be considered
as an analog of the standard linear solid model or Zener
model of viscoelastic materials [30, 37, 38]. In this model
the stress (σ)–strain (ε) relationship is given originally
by the following linear first order differential equation,
the so-called rheological constitutive equation (RCE)

σ(t) + τ0
dσ(t)

dt
= G0τ0

dε(t)
dt

+ Geε(t) , (3.8)

where τ0 is the transition time from elastic to plastic
behaviour as only for τ0 sufficiently large, the deviation
from Hooke law appears (then both derivatives can play
the role), parameter Ge is an elastic or low frequency
modulus (the Young modulus) and G0 is a plastic or high
frequency modulus since only when it is nonvanishing
the time-dependence of the strain influences the dynam-
ics. Let us note that viscosity η was defined within the
standard linear solid model in [28, 29, 37, 38,] as follows
η

def.= τ0(G0 − Ge), which (in the financial context) can
assume both negative and positive values (cf. also a short
remark in Sect. 4).

By comparing Eqs. (3.6) and (3.8) we obtain corre-
spondence between dynamic quantities of both models,
which is shown in Table I. Hence, coefficients present in
Eq. (3.6) have the meaning analogous to corresponding
ones in Eq. (3.8), if they are non-negative.

TABLE I
Correspondence between an ideal stock market and the
Zener solid model.

Stock market Zener solid model
stock market index X(t) strain ε(t)

excess demand U(t) stress σ(t)

volume of trade V (t) temporal temperature T (t)

The convenient mechanical formulation of the Zener
model [28, 36] consists of the Maxwell element connected
in parallel with a spring∗∗ (it was assumed that springs
always obey Hooke’s law). Let us note that the Maxwell
element consists of the spring and the dashpot (obeying
Newton’s law for viscous fluid) arranged in a sequential
manner. This arrangement shows a simple spatial sep-
aration of the solid (elastic) and the fluid (viscous) as-
pects; it is, however, too specific to describe the most
viscoelastic materials, e.g. such as biopolymers. Fortu-
nately, the fractional solid model (sketched in Sect. 3.3),
whose mechanical representation is given by a hierar-
chical arrangement of a number (in general infinite) of

∗∗ It should be added that springs and dashpots can represent not
only psychological states of single traders but also groups of
traders.
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springs and dashpots††, is already sufficient [28, 36] to
describe the non-Debye relaxation observed in the well
known experiment, where stress relaxation under con-
stant strain was measured. In our approach the spring
represents a purely emotional or irrational investor’s be-
haviour‡‡ (an undamped activity) while the dashpot de-
fines a purely rational one (fear or aversion to risk). Such
an interpretation creates the possibility of construction
of the mechanical model of an auxiliary and real stock
markets.

3.3. Conjecture: a transition to real market

The considerations given in this and next sections (par-
ticularly Eq. (3.13)), realize the most important stage (ii)
of our strategy defined at the beginning of Sect. 3. Before
we go to the conjecture completing a transition from an
ideal to real market, we give a motivation.
3.3.1. Influence of the past and future expectations on
the current situation

Equation (3.6) describes only the present, temporal sit-
uation which is, however, the particular case; the more
general one takes into account both the influence of the
past events and future expectations on the current state
of the market. First of all, to generalize Eq. (3.6), our
initial Eqs. (3.1) and (3.4) should be extended. We can
write them as follows:

U(t) = a0X(t) + b0V (t)

+
K(t)∑

k=1

[
a−k X(t− k∆t) + b−k V (t− k∆t)

]

+
N(t)∑
n=1

[
a+

n X(t + n∆t) + b+
n V (t + n∆t)

]
, (3.9)

and
V (t + ∆t) + eX(t + ∆t) = c0V (t) + d0X(t)

+
K(t)∑

k=1

[
c−k V (t− k∆t) + d−k X(t− k∆t)

]

+
N(t)∑
n=1

[
c+
n V (t + n∆t) + d+

n X(t + n∆t)
]
, (3.10)

where coefficients denoted by the upper index “−” con-
cern the past while these with “+” one concern the future.
Of course, the generalization of differential Eq. (3.5),
which we can directly derive from Eq. (3.10), also con-
tains (in the cumulative form) terms responsible for past
and future events. The same concerns the generalization

†† Note that different hierarchical arrangements of springs and
dashpots were discovered which lead to the same fractional re-
laxation Eq. [28] (and refs. therein). In the context of the stock
market this means that we have to deal with bifurcation of in-
vested capital structure which depends on different strategies
assumed by investors.

‡‡ In psychology the terminology “affected driven activity” or “au-
tomatic activity” is more frequently used.

of Eq. (3.6), which we can easily obtain by combining
Eqs. (3.9) and (3.10); however, this generalized equation
would be too complicated to solve it. Therefore, to ob-
tain a simplified equation which contains both past and
future events we indeed utilize the approach developed
in the frame of modern rheology.

3.3.2. Conjecture: constitutive equation of fractional dy-
namics

Equation (3.6) is indeed the one which we generalize
here into the fractional form according to the recipe elab-
orated within the modern rheology. This equation is in-
tegrated over time to yield

X(t)−X(0) = − 1
τ1

0D
−1
t X(t) +

1
G0

1
τ0

0D
−1
t U(t)

+
1

G0

[
U(t)− U(0)

]
, (3.11)

where τ1
def.= τ0G0/Ge and definition of an inverse deriva-

tive of the first order was used; the definition of its general
n-th order version (for n = 1, 2, 3, . . .) has a useful form
given by the Cauchy formula of repeated integration

t0D
−n
t f(t)

df.
=

∫ t

t0

dtn−1

∫ tn−1

t0

dtn−2 . . .
∫ t2

t0

f(t1)dt1

∫ t1

t0

f(t′0)dt′0

=
1

Γ (n)

∫ t

t0

dt′(t− t′)n−1f(t′) . (3.12)

There are several definitions of fractional differentia-
tion and integration [33]. In what follows we are dealing
strictly with the Riemann–Liouville (RL) fractional cal-
culus. The RL fractional integration (integral operator),
t0D

−α
t f(t), of arbitrary order α (> 0) of function f(t) is a

straightforward generalization of Eq. (3.12), where in the
third row of Eq. (3.12) exponent n was simply replaced
by α [33].

The fractional generalization of Eq. (3.11) is per-
formed, analogously as it was done for viscoelastic ma-
terials, by replacing expressions τ−1

0 t0D
−1
t U(t) and

τ−1
1 t0D

−1
t X(t) by τ−α

0 t0D
−α
t U(t) and τ−α

1 t0D
−α
t X(t)

ones, respectively, where the fractional exponent α is a
free but most important shape parameter (exponent).
Hence, we obtained a fractional integral equation, called
further a constitutive equation of fractional dynamics
(CEFD), which is able to describe both independent
paths of speculative peaks

X(y)−X(0) = −(τ1)−α
0D

−α
y X(y)

+
1

G0
τ−β
0 0D

−β
y U(y)

+
1

G0
[U(y)− U(0)] , α, β > 0 , (3.13)

where the independent variable
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y =





tc − t, for retrospective relaxation
(i.e. for hossa): t ≤ tc,

t− tc, for (prospective) relaxation
(i.e. for bessa): t ≥ tc,

(3.14)

and X(0), which is the maximal value of the index, is
known from the initial condition. As both paths of any
peak are assumed to be independent, we consider all pa-
rameters present in Eq. (3.13) as (in general) different for
different paths.

For (prospective) relaxation the first term on the right
hand side (rhs) of Eq. (3.13) is sensitive to the past due to
the algebraic, integral kernel included there. The second
term on the rhs of this equation desribes explicitly the
summarized financial market influence on the index; the
third term gives its instantaneous influence.

However, for retrospective relaxation situation is more
complicated since Eq. (3.13) presents relaxation for in-
versed time, where current situation depends on future
events again by an algebraic integral kernel. Of course,
both types of relaxation are compared in this work with
some empirical data.

Let us note that the pure fractional (prospective or
retrospective) relaxation equation, i.e. the homogeneous
one, is given by Eq. (3.13), where we put 1/G0 = 0
or/and U = 0 or by assuming U proportional to X
for α = β and proper choices of three constant values.
3.3.3. Comments on “mechanical” realization of consti-
tutive equation of fractional dynamics

Equation (3.13) (or CEFD) is an analogy of the cor-
responding fractional RCE describing fractional general-
ization of the Zener model of plastic material. In this
generalized model the constitutive, mechanic elements
(springs and dashpots) were replaced by fractional el-
ements (FE) realized by particular spring–dashpot ar-
rangements. These arrangements form particular lad-
ders, trees and fractal networks (cf. corresponding figures
in [28] and in references therein), which in the limit of
infinite number of constitutive elements are physical real-
izations of the simplest fractional constitutive differential
equation (Eq. (66) in [28]) being an interpolation between
Hooke law and Newton one. Each FE is characterized by
its own sequence of spring constants and viscosities.

Transition from Zener model to its fractional counter-
part means that both springs and dashpot were replaced
by fractional elements: two of them are connected in se-
ries (called fractional Maxwell element) and it is (as a
whole element) parallel to the third FE. Thus, we have
to deal with three groups of cooperative investors which
is a reminiscence of an income distribution in society,
where (roughly speaking) three essentially different pros-
perity groups were discovered [39–42]. Nevertheless, it is
still a challenge to choose arrangements, which properly
map microscopic cooperative structures of stock markets.

3.4. Solution of the fractional initial value problem

The explicit form of function U required by Eq. (3.13)
was suggested by, the commonly observed, oscillatory de-

pendence of indexes on time. Hence, we solve the frac-
tional initial value problem (3.13) by simply assuming
that

U(y) =
U(0)

2
[
exp(i(ω −∆ω)y)

+ exp(i(ω + ∆ω)y)
]
. (3.15)

By applying the Laplace transform of the RL fractional
integral operator (given by Eq. (A.5) in [32]) we easily
obtain the Laplace transformation of Eq. (3.13). Next,
by introducing the Laplace transform of (3.15) into our
equation and by applying the inverse Laplace trans-
formation into the time domain we finally obtain, for
α = β > 0, the required real part of the exact solution
(cf. expression (A.1) in our earlier work [1]).

To compare the prediction of our model with empiri-
cal data it is sufficient to use only the lowest order terms
in the exact solution (A.1), i.e. it is suficient to use the
following approximate expression:

<X(y) ≈ (X0 + X1)Eα

(
−

(
y

τ1

)α)

−X1 cos(ωy) cos(∆ωy) , (3.16)
where terms proportional to ω as well as ∆ω were ne-
glected since for empirical data considered in this work
the frequencies obey ω, ∆ω ¿ 1 (if additionally ∆ω ¿ ω
we have to deal with a beat) and all coefficients and pa-
rameters are real; the following notation was used:

X0
def.= X(0) ,

X1
def.= − 1

G0

(
τ1

τ0

)α

U(0) . (3.17)

The composed (time-independent) quantity given by the
second expression in (3.17) is considered as a single pa-
rameter whose absolute value was found in the next sec-
tion to be by few order of magnitude greater than unity.
By comparison predictions of expression (3.16) with em-
pirical data we can say more about the bubble and crash
dynamics.

4. Comparison with empirical data, discussion,
conclusions and intentions

As a simple test of validity of our rheological model of
fractional dynamics of financial market, one can fit the
formula (3.16), where we set ∆ω = 0, to empirical data
forming recent hossa of index WIG (cf. Fig. 2). It is seen
that the fit (depicted by the red curve and considered
as a trend) is satisfactory and the distribution of empiri-
cal points around the trend seems to have the statistical
character. However, parameters τ1 and X1 are burdened
with huge dispersions.

This case (observed within our deterministic approach)
seems to be a typical one for any hossa. It suggests the
existence of a financial uncertainty principle (FUP) of
quantities substantial to reach a profit by any investor§§.

§§ Uncertainty, together with risk and profit, were thoroughly and
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This principle can be formulated as follows: among quan-
tities whose values have to be known to reach a profit dur-
ing the hossa, at least one is unmeasurable, i.e. its value
cannot be determined with sufficient precision. Other-
wise, the profit could be obtained without any risk which

would be in contradiction to the market paradigm saying
that market eliminates the arbitrage opportunity. For-
tunately, due to anticorrelations existing between these
quantities, the summarized dispersion can be sufficiently
small to make the total fit satisfactory.

widespreadly reviewed in book [43].

TABLE II

Fit parameters describing recent peaks of typical main indices of small, middle and
large stock markets (upper elements L and R labeling parameters, designate left and
right paths of a peak, respectively).

Parameter WIG DAX DJIA SCI
tLc 892± 73 969± 1 627± 3 350± 2

tRc 810± 0 940± 0 640± 0 282± 0

τL
1 105± 420 426± 391 333± 38 196± 15

τR
1 272± 20 426± 72 165± 191 138± 8

αL 0.57± 0.23 0.52± 0.03 1.29± 0.02 1.39± 0.02

αR 1.562± 0.025 1.12± 0.03 1.938± 0.575 1.30± 0.13

ωL 0.004± 0.001 0.004± 0 0.011± 0.0 0.075± 0.001

ωR 0.043± 0.001 0.009± 0.0 0.030± 0.070 0.051± 0.001

∆ωL 0.0± 0.0 0.0± 0.0 0.022± 0.0 0.0± 0.0

∆ωR 0.007± 0.0 0.025± 0.0 0.040± 0.070 0.0± 0.0

TABLE III

Calibrating fit parameters describing peaks of the same indices as shown in Table II.

Parameter [p] WIG DAX DJIA SCI
XL

0 + XL
1 60081± 85273 4698± 82 3486± 40 4810± 75

XR
0 + XR

1 41963± 334 5464± 70 4010± 110 3846± 39

XL
1 −8659± 2352 −763± 35 −332± 28 −217± 13

XR
1 −2528± 269 −847± 36 −866± 81 153± 16

Moreover, we found that in the case of index WIG
the shape exponent αL is smaller than 1 (having a rea-
sonable small dispersion, cf. the corresponding number
shown in Table II at the cross of the second column and
sixth row). Hence, the fitted (solid red) curve accelerates
when it moves toward tc, where its derivative diverges. It
suggests that we have to deal at this singular point with
the analog of the first order phase transition on the War-
saw Stock Exchange. Thus we can identify at least a part
of the crash phase region as the one placed in the vicinity
of the singularity, where (to good approximation) both
curves (red and blue shown in Fig. 2) coincide. Within
this region small change of time causes large change of
index, which can be one of the sources of a huge disper-
sion of some parameters. Below, we extended this discus-
sion by considering recent daily peaks of indices listed in

Sect. 1. Full peaks of indices WIG, DAX, DJIA and SCI
were presented in subsequent Figs. 3–6 while correspond-
ing fit parameters were shown in Tables II–IV (so far, in
Table V important dates were presented concerning tc’s
shown in Table II). Again, satisfactory agreement with
empirical data are observed, which even makes possible
to draw some general conclusions.

It is seen from Table II that:

• the range of the hossa shape exponent α is larger
than 0 and smaller than 2 for considered peaks.
Moreover, for large stock markets (such as New
York Stock Exchange (NYSE) and Shanghai ones)
they are even larger than 1. For bessa shape expo-
nents they are all larger than 1. All these observa-
tions seem to be true also for other recent peaks of
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Fig. 2. Recent hossa of index WIG (the daily clos-
ing value measured in conventional points) dated from
2004.02.06 (or 2749 stock market session) to 2007.07.06
and consisting of 860 sessions. The empirical data are
marked by black dots, the prediction of formula (3.16)
for ∆ω = 0 is given by red solid curve while blue solid
curve is prediction of the stretched exponential function
plotted for the same parameters (shown in Tables II
and III) except parameter X1 that was set to zero. The
time tmax denotes the position of the empirical hossa’s
maximum and tc — the location of the theoretical turn-
ing point (from hossa to bessa) common for both func-
tions.

Fig. 3. Recent (full) peak of WIG extending from
2004-02-06 (or from the 2750th stock market session)
to 2009-05-18 (or to the 4073rd session). A little over-
lap between the (theoretical) rising and falling paths at
the top of the peak is seen. This is caused by the uncer-
tainty concerning the theoretical beginning of the bessa
and the assumption that both paths can be considered
as independent ones. Here, the theoretical beginning
of the bessa was assumed as 2007-04-24 (or the 3559th
stock market session).

TABLE IV
Accuracy of the fit, where fit parameters were shown
in Tables II and III.

Fit accuracy WIG DAX DJIA SCI
R2

L 0.9986 0.9985 0.9996 0.9983
R2

R 0.9985 0.9977 0.9971 0.9967

Fig. 4. Recent (full) peak of DAX extending from
2003-09-04 (or from the 11001st stock market session)
to 2009-07-01 (or to the 12482nd session). The (theo-
retical) left path of the peak ends at 2007-07-13 (or ends
at the 11985th session) while the right one begins from
2007-07-12 (or begins from the 11984th session). A lit-
tle discontinuity of paths and their slight displacement is
seen at the top of the peak. Again, this results from the
uncertainty concerning the theoretical beginning of the
bessa and treating of both paths as independent ones.

Fig. 5. Recent (full) peak of DJIA extending from
2005-03-16 (or from the 27251st stock market session)
to 2009-06-09 (or to the 28315th session). The (theoret-
ical) left path of the peak ends at 2007-09-12 (or ends
at the 27877th stock market session) while the right one
begins from 2007-10-01 (or begins from the 27890th ses-
sion). A little discontinuity and displacement of theo-
retical (solid) curves, seen at the top of the peak, results
from the fact that its both paths are considered as in-
dependent ones.

main stock market indices;

• localization of maxima, tc, of hossa and bessa were
found with relatively small dispersion in contradic-
tion to fractional relaxation time ones, τ1. For most
of peaks tRc < tLc and for other ones tRc ≥ tLc ;

• all frequencies, ω, and frequency shifts, ∆ω, are
much smaller than 1, which obeys a constraint re-
quired for application of the approximate solution
(3.16).

It is evident from Table III that:

• the calibration (combined) parameter X1 can as-
sume both the positive and negative values, which
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Fig. 6. Full peak of SCI extending from 2006-08-15 (or
from the 2200 stock market session) to 2009-02-05 (or
to the 2800 session), which much less oscillates in this
range than the Nikkei. The (theoretical) left path of
the peak ends at 2007-10-18 (or ends at the 2549th
stock market session) while the right one begins from
2007-10-16 (or begins from the 2481st session). The
overlap of theoretical (solid) curves observed at the top
of the peak results, as usual, from uncertainty concern-
ing the location of the hossa-bessa turning point and
independence of both paths.

TABLE V
Dates which correspond to tLc and tRc shown in Table II.

Date WIG DAX DJIA SCI
tLc 2007-07-06 2007-07-13 2007-09-12 2008-01-22
tRc 2007-04-24 2007-07-12 2007-10-01 2007-10-16

depends on sign of the initial value U(0) (cf. the sec-
ond expression in (3.17)). Unfortunately, although
we obtained α’s and τ1 ’s directly from fits, it is
impossible to separately derive parameters needed
for calculation viscosities η’s (i.e., parameters τ0 ’s
and Ge ’s, see remark in Sect. 3.3.2. concerning
Eq. (3.11)). We can only say that we cannot ex-
clude negative values of viscosities (which could oc-
cur if τ1 would be smaller than τ0

¶¶) that are re-
lated to positive feedbacks [2].

>From Table IV it follows that:

• accuracies, R2, of all fits are satisfactory as they are
restricted to rather narrow range 0.9967 ≤ R2 ≤
0.9996.

We can conclude that:

• the rough short-term forecasting made by simple
extrapolation of theoretical curves is, of course,
possible (see, for instance, Fig. 4).

¶¶ This conclusion results from the formula η = Ge(τ1 − τ0), which
can be easily obtained from definitions of η and τ1.

4.1. Supplementary correspondence between the stock
market and equilibrium thermodynamics

The additional, useful correspondence between some
stock market quantities and thermodynamic ones is given
in Table VI, where L0 is a free linear size when no stress
is applied, ∆L is the change of the linear size under the
applied stress, T is (as usual) the temperature while TC

transition temperature and p is a pressure. We did not
consider here the thermodynamics of a fractional solid
(which is interesting of itself), but only pay attention to
some supplementary analogy between the stock market
and thermodynamics; decisive here is the correspondence
between the interest rate per unit time and the linear
coefficient of expansion whose divergence gives indeed the
criterion for the dynamic phase transition possible at the
stock market.

4.2. Unified equation for fractional relaxation,
log-periodic oscillations and Tsallis q-exponential

function
Since log-periodic oscillations and Tsallis q-exponential

function were so successfully applied to description of the
dynamics of stock market indices or returns the ques-
tion arises whether is it possible to find a unified equa-
tion, which is able to cover all these three dynamics to-
gether∗∗∗. In this subsection we perform a single step
toward the answer for this question by extending the cor-
responding derivation given in [3].

In the course of extension we propose the generalized,
unified fractional relaxation equation in the form

dη
(
yξX(y)

)

d (yα)η = −F (y) [X(y)]q , y ≥ 0 ,

F (y) def.= − (
γ + iω + ξyξ−1

)
B , (4.1)

where all real quantities η (> 0), ξ (> 0), α (> 0),
q, γ, ω, B are independent of variable y and the Caputo
fractional derivative is defined by the Riemann–Liouville
fractional calculus as follows:

dηX(y)
dyη

def.= 0D
−(1−η)
y X(1)(y), (4.2)

where X(1) means the first derivative of X. The type
of the solution Xη,ξ,α,q(y; γ, ω, B) of Eq. (4.1) decisively
depends on values of exponents η, ξ, α, q.

It is illustrative to present two essentially different
groups of solutions; the first one, discussed already by
Tsallis [3]

Xη,ξ=0,α,q(x; γ = −1, ω = 0, B)

∼





Eη (−(y/τ)η) , x = yη, α = 1, q = 1, B = τ−η,

exp (−(y/τ)α) , x = y, η = 1, q = 1, B = τ−α,

expq(−βy), x = y, η = 1, α = 1, B = β ,

and the second group concernig the log–periodic oscilla-
tions:

∗∗∗ This subsection was prepared under direct inspirations of Con-
stantino Tsallis and Didier Sornette.
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Xη=1,ξ=1,α=1,q=1(x; γ, ω,B = 1) ∼ 1− [
(1− δγ,1)B1y

γ

+δγ,1B2 ln(y)
][

1 + C cos (ω ln(y) + φ)
]
. (4.3)

Of course, to find general solution of Eq. (4.1), which
seems to be a challenge, some initial or/and boundary
conditions are required.

Finally, we suppose the rheological model of fractional
dynamics of financial market, together with above men-
tioned fits by log–periodic oscillations and q-exponential

function, can rationally decrease the risk of investment
on a stock market since it allows to warn the investors
before the stock market reaches a crash region. We hope
that our approach will be an inspiration for futher appli-
cations, generalizations and study of not only the dynam-
ics but also microscopic cooperative structures of stock
markets.

TABLE VI
Correspondence between some stock market and thermodynamic quantities.

Stock market Thermodynamics
stock market index X linear size L (= L0 + ∆L)

y = t− tc y = T − TC

returns per unit time d ln X
dy

linear coefficient of expansion ( ∂ ln L
∂T

)p
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Appendix
Exact solution of the fractional initial value

problem

The real part of the exact solution of our fractional
initial value problem (3.13) takes, for α = β, the following
form:

<X(y) = (X0 + X1)Eα

(
−

(
y

τ1

)α)

−X1 cos(ωy) cos(∆ωy)

−ωX1

(
1−

(
τ0

τ1

)α) ∫ y

0

sin(ω(y − y′))

× cos(∆ω(y − y′))Eα

(
−

(
y′

τ1

)α)
dy′

−∆ωX1

(
1−

(
τ0

τ1

)α) ∫ y

0

cos(ω(y − y′))

× sin(∆ω(y − y′))Eα

(
−

(
y′

τ1

)α)
dy′. (A.1)

In all our calculations we used approximate solution given
by the first and second rows in (A.1), i.e. we assumed
that both ω and ∆ω are at most of the order of 0.1 (cf.
Table II) and the fraction ( τ0

τ1
)α at most of the order

of 1, which makes our fit consistent (in spite of that, we
have empirical data insufficient to verify the value of this
fraction).

References

[1] M. Kozłowska, A. Kasprzak, R. Kutner, Int. J. Mod.
Phys. C 19, 453 (2008).

[2] D. Sornette, Why Stock Markets Crash. Critical
Events in Complex Financial Systems, Princeton Uni-
versity Press, Princeton 2003.

[3] C. Tsallis, Braz. J. Phys. 39, 337 (2009).
[4] B.M. Roehner, Patterns of Speculation. A Study

in Observational Econophysics, Cambridge University
Press, Cambridge UK 2002.

[5] M. Ausloos, in: Econophysics and Sociophysics.
Trends and Perspectives, Eds. B.K. Chakrabarti,
A. Chakraborti, A. Chatterjee, Wiley-VCH Verlag,
Weinheim 2006, Ch. 9, p. 249.

[6] W.-X. Zhou, D. Sornette, Physica A 330, 543 (2003).
[7] W.-X. Zhou, D. Sornette, Physica A 330, 584 (2003).
[8] P. Gnaciński, D. Makowiec, Physica A 344, 322

(2004).
[9] S. Drożdż, F. Grummer, F. Ruf, J. Speth, Physica A

324, 174 (2003).
[10] S. Drożdż, J. Kwapień, P. Oświȩcimka, J. Speth, Acta
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