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The elastic and thermodynamic properties of the anti-perovskite superconductor ZnCNi3 and CdCNi3 are
investigated by first-principles calculations. With the local density approximation as well as the generalized
gradient approximation for exchange and correlation, the ground state properties and equation of state are
obtained, which agree well with other theoretical calculations and experiments. Furthermore, by the elas-
tic stability criteria, we predict that ZnCNi3 and CdCNi3 are not stable above 98.1 GPa and 196.5 GPa,
respectively. The dependences of the heat capacity, thermal expansion coefficient, the Grüneisen parameter
and bulk modulus (BT and BS) on pressure and temperature for ZnCNi3 and CdCNi3 are also obtained successfully.

PACS numbers: 71.15.Mb, 62.20.D−, 91.60.Gf

1. Introduction

Soon after the discovery of 8 K intermetallic anti-
-perovskite superconductor compound MgCNi3 [1], the
isostructural cubic anti-perovskites type MCNi3 (M =
Zn, Cd) have aroused great interest of scientists for their
many puzzling physical properties. These compounds
have the classical cubic perovskite structure with the oxy-
gen atoms on the faces replaced by nickel atoms. All of
them reside in the space group 221 (Pm3m). In the crys-
tal of MCNi3, the atoms occupy the positions: M(0; 0; 0),
C(1/2; 1/2; 1/2) and Ni(0; 1/2; 1/2). A carbon atom lo-
cates in the body-centered position surrounded by six
nickel atoms to form an octahedral cage.

Up to now, most of experimental and theoretical inves-
tigations have been focused on superconductivity, density
of states (DOS) and energy bands of MCNi3 [2–11]. Park
et al. [3] found that the experimental data on ZnCNi3
shows that the Fermi level density of states is smaller
than that of MgCNi3, and argued that a strongly de-
pressed DOS at the Fermi level could be responsible for
pushing the transition temperature of ZnCNi3 below 2 K.
Uehara et al. [8] observed that CdCNi3 is a superconduc-
tor with Tc = 2.5–3.2 K. Moreover, the available experi-
mental and theoretical data have shown that the physical
properties of MgCNi3 material are very sensitive to ex-
ternal pressure, such as the superconducting transition
temperature Tc, electronic and elastic properties [10, 11].
Therefore, a detailed study on the properties of ZnCNi3
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and CdCNi3 under pressure and temperature is very nec-
essary for their potential applications. The results may
give useful insight toward proper understanding of the
behaviors of ZnCNi3 and CdCNi3 superconductors.

In this work, we mainly focus on the mechani-
cal stability and thermodynamic properties of MCNi3
under pressure and temperature by using the first-
-principles pseudopotential plane-wave method based on
the density-functional theory and the quasi-harmonic De-
bye model [12]. The results obtained are in good agree-
ment with the available experimental data and other the-
oretical results. In Sect. 2, we make a brief review of
the theoretical methods. The results and some discus-
sions are presented in Sect. 3. Finally, the conclusions
are summarized in Sect. 4.

2. Theoretical calculations

2.1. Total energy electronic structure calculations

In the electronic structure calculations, the ultrasoft
pseudopotentials introduced by Vanderbilt [13] are em-
ployed for all the ion–electron interactions, together with
both the local density approximation (LDA) [14] and
the generalized gradient approximation (GGA) [15] as
exchange-correlation functions. A plane-wave basis set
with an energy cut-off of 400 eV is applied. For the Bril-
louin zone sampling, we use an 8 × 8 × 8 Monkhorst–
Pack mesh [16]. The self-consistent convergence of the
total energy is 10−6 eV/atom. Hydrostatic pressure, cou-
pled with the variable cell approach, is applied within
the Parrinello–Rahman method [17] to perform a full

(652)
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optimization of the cell structure for each target exter-
nal pressure. All these total energy electronic struc-
ture calculations are implemented by using the CASTEP
code [18].

2.2. Elastic properties

Elastic constants are defined by means of a Taylor ex-
pansion of the total energy, E(V , δ), for the system with
respect to a small strain δ of the lattice primitive cell
volume V . The energy of a strained system is expressed
as follows [19]:

E(V, δ) = E(V0, 0)

+V0


∑

i

τiξiδi +
1
2

∑

ij

Cijδiξiδj


 , (1)

where E(V0, 0) is the energy of the unstrained system
with equilibrium volume V0, τi is an element in the stress
tensor, and ξi is a factor to take care of the Voigt index.
It is known that for a cubic crystal structure there are
only three independent of the elastic tensor components,
i.e. C11, C12, C44.

At the same time, the bulk modulus B and the shear
modulus G are taken as

B = (C11 + 2C12)/3 , (2)

G = (3C44 + C11 − C12) /5 . (3)
Then the Young modulus E and the Poisson ratio σ is
given by

E =
9BG

3B + G
, (4)

σ =
1
2

(1− E/3B) . (5)

The shear and longitudinal sound velocities Vs and Vl are
obtained from Navier’s equation as follows [20]:

Vs =

√
G

ρ
, Vl =

√(
B +

4
3
G/ρ

)
. (6)

Furthermore, average wave velocity Vm is obtained from

Vm =
[
1
3

(
2

V 3
s

+
1

V 3
l

)]−1/3

. (7)

Finally, with the average wave velocity Vm, the Debye
temperature can be estimated [21]:

Θ =
~
k

[
3n

4π

(
NAρ

M

)]1/3

Vm , (8)

where h is Planck’s constant, k is Boltzmann’s constant,
NA is Avogadro’s number, n is the number of atoms per
formula unit, M is the molecular mass per formula unit,
ρ (= M/V ) is the density.

2.3. Quasi-harmonic Debye model

To investigate the thermodynamic properties of
MCNi3, we here apply the quasi-harmonic Debye
model [15], in which the phononic effect is considered.
In the quasi-harmonic Debye model, the non-equilibrium
Gibbs function G∗(V ;P, T ) takes the form of

G∗(V ;P, T ) = E(V ) + PV + Avib(Θ(V ); T ) , (9)
where E(V ) is the total energy per unit cell, PV cor-
responds to the constant hydrostatic pressure condition,
Θ(V ) is the Debye temperature, and Avib is the vibra-
tional Helmholtz free energy that can be written as

Avib(Θ ; T )

= nkT

[
9
8

Θ
T

+ 3 ln(1− e−Θ/T )−D(Θ/T )
]

, (10)

where D(Θ/T ) represents the Debye integral, n is the
number of atoms per formula unit. For an isotropic solid,
Θ is expressed by

Θ =
~
k

(
6π2V 1/2n

)1/3

f(σ)

√
BS

M
, (11)

where M is the molecular mass, BS is the adiabatic bulk
modulus and f(σ) are approximated by the static com-
pressibility [22]

f(σ) =


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[
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,

(12)

BS
∼= B(V ) = V

{
d2E(V )

dV 2

}
. (13)

The Poisson σ is obtained from Eq. (5). Therefore, the
non-equilibrium Gibbs function G∗(V ; P, T ) can be min-
imized with respect to volume V :(

∂G∗(V ; P, T )
∂V

)

P,T

= 0 , (14)

and one could obtain the thermal equation of state and
the thermal expansion coefficient α as follows:

α = γCV /(BT V ) , (15)
where the isothermal bulk modulus BT , the heat capac-
ity CV and the Grüneisen parameter γ are expressed as

BT (P, T ) = V

[
∂2G∗(V ;P, T )

∂2V 2

]

P,T

, (16)

CV = 3nk

[
4D(Θ/T )− 3Θ/T

eΘ/T − 1

]
, (17)

γ = − d lnΘ(V )
d ln V

. (18)

3. Results and discussion

3.1. Structure and equation of state

At first, a series of lattice constants a are set to ob-
tain the total energy E and the corresponding primitive
cell volume V through both GGA and LDA schemes. By
fitting the E–V data to the numerical equation of state
(EOS) [12], we can obtain the equilibrium lattice con-
stant a0, bulk modulus B0 and its pressure derivation B′

0

at P = 0 GPa and T = 0 K, which are listed in Table I,
together with the available experimental and other theo-
retical data [3–9, 23, 24].
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TABLE I
Lattice constants (Å), bulk modulus B0 (GPa) and its pressure derivative B′

0 of MCNi3 at 0 GPa and 0 K.

MCNi3 Parameters
Present work Other work

Experiments
GGA LDA GGA LDA

ZnCNi3

a0

B0

B′
0

3.7856
197.46
4.67

3.6985
243.3
4.50

3.78a, 3.8236b

176.99d

3.69a, 3.679c, 3.7338b

251c

3.66f , 3.77g

CdCNi3

a0

B0

B′
0

3.8830
182.47
4.80

3.7913
227.35
4.67

3.871e, 3.867d, 3.8668i

152.77d, 188.31i, 182.65e

4.77e

3.777e

228.39e

4.76e

3.844± 0.001h

a Ref. [4]; b Ref. [5]; c Ref. [6]; d Ref. [9]; e Ref. [7]; f Ref. [3]; g Ref. [23]; h Ref. [8]; i Ref. [24]

For ZnCNi3, our lattice constant a0 from GGA and
LDA approaches are close to those given by Sieberer et al.
and Joseph et al. [4, 5]. Their experimental data have
the difference of 0.11 Å. Our LDA result approaches the
former [3] and GGA result seems to approach the lat-
ter [23]. Exceptionally, Park et al. experimental value
(3.66 Å) is smaller than all theoretical LDA results [4–6]
and other experimental results [23]. This directly leads
to the Johannes and Picket further research. They sug-
gested a larger lattice constant (probably near 3.74 Å)
than their theoretical data (3.679 Å) [6] for stoichiomet-
ric ZnCNi3. The suggested lattice constant is perfect
between our GGA and LDA results, just like the same
cases for isostructural MgCNi3 [11] and CdCNi3 whose
theoretical data are compared with experimental data [8].
For CdCNi3, our results are consistent with the Uehara
et al. experimental results [8], the present B0 and B′

0 are
very close to the Wu et al. [7] while have some difference
with the Shein et al. calculations [9]. It is easily found
that almost all the theoretical calculations for the lattice
constants by GGA are overestimated, and those by LDA
are underestimated. The atomic radii (M = Zn, Cd) are
1.39 Å and 1.56 Å respectively, and a0 (ZnCNi3) < a0

(CdCNi3) is reasonable.
In addition, the normalized volume V/V0 calculated as

a function of pressure for MCNi3 is plotted in Fig. 1.
The relative volume decreases almost linearly with the
pressure increases. When the applied pressure equals to
100 GPa, the cell volume for ZnCNi3 and CdCNi3, re-
spectively, become 76.2% and 75.8% of the zero pressure
equilibrium cell volume. It is clearly seen that ZnCNi3 is
compressed more difficult than CdCNi3.

3.2. Elastic constants and mechanical stability

The elastic constants of solids provide a link between
the mechanical and dynamical behaviors of crystals, and
give important information concerning the nature of the
forces operating in solids. The Debye temperature ΘD

correlates with many physical properties of solids, such
as specific heat, phonon frequency, thermal coefficient
and melting temperature.

In Table II, the elastic constants C11, C12, C44, longi-
tudinal, shear and average wave velocities Vl, Vs, Vm and

Fig. 1. Changes of the relative volume of MCNi3 with
increasing pressure.

Debye temperature ΘD of MCNi3 at P = 0 and T = 0
are listed. The Vl, Vs, Vm and ΘD are calculated with
the obtained elastic constants from Eq. (6), Eq. (7) and
Eq. (8). Due to an underestimate of the lattice con-
stant, the elastic constants calculated by LDA are larger
than those by GGA. Though there are no experimental
wave velocities for comparison, our results are very close
to the experimental wave velocities of the isostructural
MgCNi3, and are smaller than other theoretical calcula-
tions [7, 25]. For ZnCNi3, the Debye temperature ΘD is
very close to the Park et al. experimental data by an-
alyzing X-ray diffraction (XRD) data [3]. For CdCNi3,
though the obtained ΘD is larger than that of the Uehara
et al. experimental data, the obtained sequence of ΘD by
GGA: ΘD (ZnCNi3 = 424) > ΘD (CdCNi3 = 405) > ΘD

(MgCNi3 = 283) are consistent with the experimental
sequence: ΘD (ZnCNi3 = 421) > ΘD (CdCNi3 = 352) >
ΘD (MgCNi3 = 287) [3, 8, 11, 26]. Correspondingly a
decrease of the Debye temperature, the averaged phonon
frequency should also decrease among the three anti-
-perovskite superconductors.
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TABLE II

Calculated elastic constants in GPa, longitudinal, shear and average wave velocity (Vl, Vs and Vm) in m s−1

and the Debye temperature ΘD in K at 0 GPa and 0 K.

Methods C11 C12 C44 Vl Vm Vs ΘD

ZnCNi3

Present

Other cal.

Exp. [3]

GGA
LDA
GGA
MRIM

349.94
427.45
319.53a

344b

121.23
143.02
105.72a

110b

38.88
41.73
39.42a

64b

5992
6325

6858b

3154
33273

4024b

2802
2905

3598b

424
450

302b

421

CdCNi3

Present

Other cal.

Exp. [8]

GGA
LDA
GGA

LDA
MRIM

302.17
380.60
337.26c

255.0a

423.80c

341b

124.82
156.45
105.34c

101.65a

130.69c

127b

52.34
58.80
57.36c

58.39a

67.12c

72b

5629
6046
6159c

5750c

7014b

3094
3246
3536c

3334c

4087b

2755
2887
3156c

2979c

3653b

405
435

307b

352

a Ref. [9]; b Ref. [25]; c Ref. [7]

Pettifor [27] suggested that the angular character of
atomic bonding in metals and compounds could be de-
scribed by the Cauchy pressure C12–C44. If the bonding
in character is metallic, the Cauchy pressure is typically
positive. If the bonding in character is directional and
with a lower mobility, the Cauchy pressure is typically
negative. The rule has been used in the study of ductile
materials (Ni, Al), brittle semiconductors (Si) and alloy-
ing effects on TiN-based nitrides [27, 28]. The values of
the calculated Cauchy pressures C12–C44 of ZnCNi3 and
CdCNi3 are 82.35 GPa and 72.48 GPa at zero pressure,
respectively. Due to the typically positive values of the
Cauchy pressure, the MCNi3 should belong to metalli-
cally bonding materials.

Recently, the elastic constants and mechanical stabil-
ities of crystals have attracted much interest by physi-
cists [29]. In 2002, Sin’ko and Smirnov [29] deduced the
conditions of mechanical stability from elastic constants.
As is known, for a cubic crystal, the mechanical stabil-
ity under isotropic pressure is judged from the following
condition:

C̃44 > 0 , C̃11 >
∣∣∣C̃12

∣∣∣ , C̃11 + 2C̃12 > 0 , (19)

where C̃αα = Cαα − p (α = 1, 4), C̃12 = C12 + p. The
elastic constants of MCNi3 under pressure obtained are
illustrated in Fig. 2. It is seen that C11, C12 and C44

increase with the enhancement of pressure. The change
of C11 is more sensitive to pressure than other two, while
C44 is the most unresponsive one.

Figure 3 presents the C̃44 versus pressure for MCNi3.
By fitting C̃44 data to second-order polynomials, we find
that the pressures of ZnCNi3 and CdCNi3 are above
98.1 GPa and 196.5 GPa, respectively, C̃44 > 0 is no
longer fulfilled, which indicated that ZnCNi3 and CdCNi3

Fig. 2. The dependence of Cij and B of MCNi3 on
pressure.

are not mechanically stable at above the pressures. In our
former work, the obtained critical pressure of MgCNi3 is
58.4 GPa [11], which is reasonable by comparing some
experimental data. In fact, according to our experience,
the phase transition pressure should be smaller than the
critical mechanical stable pressure.

3.3. Thermodynamic properties

The quasi-harmonic Debye model empowers us to ob-
tain heat capacity CV , thermal expansion coefficient α,
Grüneisen parameter γ and bulk modulus on tempera-
ture and pressure. In Fig. 4, we plot the dependence
of heat capacity CV on temperature at 0 and 95 GPa,
respectively. It is readily seen that when T < 500 K,
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Fig. 3. The mechanical stability of MCNi3 versus pres-
sure at 0 K.

the CV of MCNi3 are strongly dependent on the tem-
perature and pressure. This is due to the anharmonic
approximations of the Debye model used here. At higher
pressures and higher temperatures, the anharmonic ef-
fect on CV is suppressed, and CV is close to a constant.
The calculated CV of CdCNi3 is slightly larger than CV

of ZnCNi3. However, our results are significantly smaller
than the Kaur et al. theoretical calculation results for
both ZnCNi3 and CdCNi3 until T > 600 K [25].

Fig. 4. Temperature dependences of heat capacity for
MCNi3 at 0 and 95 GPa, compared with the previous
calculation [25].

In Fig. 5, we present the variations of the thermal ex-
pansion coefficient α with temperature and pressure. At
a given temperature, the thermal expansion coefficient α
of ZnCNi3 and CdCNi3 decrease rapidly as the pressure
enhances. However, the α increases exponentially with T
at low temperatures and gradually approaches to a linear
increase at high temperatures. It is noted that the curves
of 300 K and 1000 K seem to be parallel to each other,
and the α of ZnCNi3 and CdCNi3 are almost exactly the

same at 300 K. At the room temperature and zero pres-
sure, the α of ZnCNi3 and CdCNi3 are 4.08× 10−5 K−1

and 4.14× 10−5 K−1, respectively.

Fig. 5. Thermal expansion coefficient α versus pres-
sure and temperature for MCNi3.

The Grüneisen parameter γ could describe the alter-
ation in vibration of a crystal lattice based on the increase
or decrease in volume as a result of temperature change.
Recently, it has been widely used to characterize and ex-
trapolate the thermodynamic properties of materials at
high pressures and high temperatures. In Fig. 6, the vari-
ations of the Grüneisen parameter γ with pressure and
temperature are displayed, from which it can be found
that the Grüneisen parameter γ increases with increas-
ing temperature at a given pressure and decreases with
increasing pressure at a given temperature. These results
are due to the fact that the effect of increasing pressure
on the material is the same as that of decreasing temper-
ature on it. At zero pressure the Grüneisen parameter γ
obviously increases with temperature, but the increasing
tendency become more weak after P = 50 and 95 GPa
for ZnCNi3 and CdCNi3, respectively.

The dependences of isothermal (BT ) and adiabatic
(BS) bulk modulus of MCNi3 on temperature at zero
pressure are illustrated in Fig. 7. It can be found that BT

and BS are nearly constant from 0 K to 100 K and then
decrease almost linearly with increasing temperatures, as
is obvious from the relationship BS = BT (1 + αγT ).
BT and BS coincide at low temperature and then di-
verge with rising T . At room temperature, dBT /dT of
ZnCNi3 and CdCNi3 are −0.0392 and −0.0403 GPa/K
and dBS/dT are −0.0181 and −0.0208 GPa/K, respec-
tively. The variety of dBT /dT is much stronger than
that of dBS/dT .

4. Conclusions

The elastic and thermodynamic properties of the anti-
-perovskite superconductor MCNi3 under pressure are
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Fig. 6. Pressure (a) and temperature (b) dependences
of Grüneisen parameter γ for MCNi3.

Fig. 7. Temperature dependence of isothermal (BT )
and adiabatic (BS) zero-pressure bulk modulus for
MCNi3.

investigated by first-principles calculations with the lo-
cal density approximation as well as the generalized gra-
dient approximation for exchange and correlation. The
ground state properties and equation of state of MCNi3
are obtained, which agree well with both theoretical cal-
culations and experiments. We conclude that MCNi3
should belong to metallically bonding materials by ana-
lyzing their elastic modulus. From the high pressure elas-
tic constants, we predict that ZnCNi3 and CdCNi3 are
not stable above 98.1 GPa and 196.5 GPa, respectively.
Lastly, some thermodynamic properties such as the heat
capacity, thermal expansion coefficient, the Grüneisen
parameter and bulk modulus (BT and BS) under dif-
ferent pressures and temperatures are also successfully
obtained. Our calculations show that the ZnCN3 and
CdCNi3 are very similar in structural, elastic and ther-
modynamic properties.
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