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The Rayleigh–Taylor instability of two superposed incompressible fluids of different densities in the presence
of small rotation, surface tension and suspended dust particles is investigated. The linearized equations of the
problem are constructed and the general dispersion relation is obtained using normal mode analysis by applying
the appropriate boundary conditions. The effects of surface tension, the Atwood number, small rotation and
suspended dust particles are studied on both conditions of Rayleigh–Taylor instability and growth rate of the
unstable Rayleigh–Taylor mode. The numerical calculations have been performed to see the effect of rotation,
the Atwood number, relaxation frequency and mass concentration of suspended dust particles. It is found that
the growth rate of Rayleigh–Taylor instability depends upon the mass concentration and relaxation frequency of
suspended dust particles. The uniform small rotation, relaxation frequency and mass concentration of suspended
dust particles all have stabilizing influence on the growth rate of Rayleigh–Taylor instability. It is also found that
the Atwood number has destabilizing influence on the growth rate of the considered Rayleigh–Taylor configuration.

PACS numbers: 47.50.Gj, 52.35.Py, 47.20.Ib, 06.30.Gv, 47.10.−g

1. Introduction

The instability of a heavy fluid layer supported by a
light one is known as the Rayleigh–Taylor (R–T) insta-
bility. The R–T instability has much importance in laser
fusion, space plasma, astrophysical plasmas, laboratory
plasma and in chemical engineering processes in indus-
tries [1–3]. It generally occurs under gravity whenever
the heavy fluid is accelerated by the light ones. Chan-
drasekhar [4] and Roberts [5] have given a comprehensive
account, which contains solutions of this classical prob-
lem of R–T instability under different conditions and as-
sumptions of hydromagnetics. Menikoff et al. [6] have dis-
cussed the character of growth rate of the normal modes
of the R–T instability of superposed incompressible vis-
cous fluids in term of dimensionless parameters and de-
rived a simple R–T instability dispersion relation. Evans
et al. [7] have analyzed the growth rate of ablation-driven
R–T instability in laser-driven targets. Mikaelian [8] has
derived analytical formula for the growth rate of R–T in-
stability in a number of density profiles. Recently, the
R–T instability of low frequency non-uniform multi-ion
species magnetoplasmas is studied by El-Shorbagy and
Shukla [9]. Huang et al. [10] have discussed the effects of
compressibility and the finite Larmor radius (FLR) cor-
rections on R–T instability of z-pinch implosions. Thus
the problem of R–T instability is widely discussed for
many problems of different types of medium.
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In the past decades, owing to the relevance of sus-
pended dust particles in a large number of astrophysi-
cal phenomena, space situations and experimental, and
laboratory problems, various workers have incorporated
the effect of suspended dust particles in analysis of the
R–T and other instabilities. The effect of suspended dust
particles on the stability of two superposed fluids in hy-
drodynamics is of industrial and scientific importance in
geophysical engineering. In this direction, Saffman [11]
has discussed in detail a dust gas in magnetohydrody-
namics. Scanlon and Segel [12] have made a thorough
study of the implication of suspended particles in hydro-
magnetics for the Benard convection problem. Sharma
and Sharma [13] have also discussed the R–T instability
for a medium consisting of two superposed fluids with
suspended particles and obtained the criteria determin-
ing stability and instability of the system in the pres-
ence of suspended particles. Sanghvi and Chhajlani [14]
have incorporated the finite resistivity effect on the R–T
configuration of stratified plasma in the presence of sus-
pended particles and found that the dust particles have
a stabilizing as well as a destabilizing influence under
different conditions. Sanghvi and Chhajlani [15] have
further discussed the influence of FLR corrections on the
Kelvin–Helmholtz (K–H) instability of two superposed
streaming fluids acted upon by a uniform magnetic field
transverse to the direction of streaming in the presence
of suspended particles and found that FLR corrections
give the stabilizing effect in the presence of suspended
particles. Recently, el-Sayed [16] has investigated the hy-
dromagnetic instability in the context of R–T instability
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for oldroydian viscoelastic porous media taking the ef-
fects of suspended dust particles and uniform magnetic
field. The effect of suspended dust particles on the R–T
instability is also investigated for the Rivilin–Ericksen
viscoelastic fluids [17, 18]. Thus we find that suspended
dust particles play a major role in discussions of R–T
instability of different types of fluids.

In addition to this, Mikaelian [19] has investigated
the R–T instability and Richtmyer–Meshkov instabilities
in multilayer fluids with surface tension. Reid [20] has
also discussed the effects of surface tension and viscosity
on the stability of two superposed fluids. He has dis-
cussed the most detailed and considerable effects arising
from surface tension. Sharma [21] has studied the R–T
instability in case of fully ionized superposed fluid in-
corporating the effect of surface tension. In the other
study, Sharma [22] has also discussed the R–T instabil-
ity of rotating superposed fluids through porous medium.
The R–T instability of two superposed partially ionized
plasma is discussed by Ogbonna and Bhatia [23] for non-
-rotating viscid case. Bhatia and Chhonkar [24] have
studied the effect of rotation in x-direction in case of su-
perposed fluids having the interface in the x–y plane with
gravity in z-direction. Vaghela and Chhajlani [25] have
analyzed the R–T instability for two superposed fluids
of partially ionized rotating fluids with surface tension.
Recently, Chertkov et al. [26] have investigated the effect
of surface tension on immiscible R–T turbulence. Thus
the effect of surface tension is widely explored to discuss
the R–T instability.

In addition to above analysis, Alterman [27] has dis-
cussed the effect of surface tension and rotation on K–H
instability of two superposed fluids. Sharma and Chha-
jlani [28] have investigated the R–T instability of two
superposed magnetized plasma fluids with rotation and
suspended dust particles. Sharma et al. [29] have con-
sidered the R–T instability of the Rivilin–Ericksen fluid
through porous medium and included the uniform rota-
tion in this problem. Davalos-Orozco [30, 31] has ana-
lyzed the R–T instability of a fluid system under general
and parallel rotation. The problem of suspended dust
particles is also discussed with rotation for the problem
of convection by Sunil et al. [32]. El-Ansary et al. [33]
have studied the effect of surface tension and rotation on
the R–T instability.

Recently, El-Sayed [34] has investigated the hydromag-
netic transverse instability of two highly viscous fluid par-
ticle flows with FLR corrections. He has obtained the
dispersion relation for static R–T configuration taking
perturbation in y-direction only. The effect of rotation
and surface tension was not considered in his study but
we have taken these effects and obtained the complete
dispersion relation for non-viscous medium.

From all these discussions, we also conclude that var-
ious problems of R–T instability in the presence of sus-
pended dust particles, surface tension and rotation are
under current investigation but none of the authors has
taken the combined effect of all these parameters viz.

suspended dust particles, rotation and surface tension to
investigate the R–T instability of two superposed fluids.
Thus the object of the present problem is to study the ef-
fect of rotation and surface tension on the stability of two
superposed fluids in the presence of suspended dust parti-
cles with three-dimensional perturbations in the analysis.

2. Linearized perturbation equations

We consider two infinite homogeneous incompressible
fluids separated by a plane interface at z = 0, each of
these regions (z < 0 and z > 0) denoted by the sub-
script 1 and 2 (see Fig. 1). It is assumed that the fluids
are permeated with suspended dust particles of uniform
shape and size. The density of fluids is greater than the
density of dust particles. The fluid is assumed to be in-
finitely extending having the free horizontal surface in the
x–y plane. The fluid has uniform rotation with an an-
gular velocity Ω (0, 0,Ω) about the vertical z-direction.
The fluid is under the action of acceleration due to gravity
g (0, 0,−g). If the suspended dust particles are assumed
to be of uniform size, spherical shape and have small rel-
ative velocities between the two phases, then the extra
body force per unit volume KN(v − u) is added to the
momentum transfer equation, where K = 6πρνa. The
quantities a, ν, u and v denote the particle radius, kine-
matic viscosity of the clean fluid, velocity of fluids and
velocity of suspended particles, respectively. The density
of the fluid and number density of the dust particles are
represented by ρ and N .

Fig. 1. Schematic diagram of the considered R–T con-
figuration.

The suspended dust particles have homogeneous dis-
tribution in both the regions of the fluids. The effects
of pressure gradient of the suspended particles and the
gravity force on suspended particles are assumed negligi-
ble. The collisional force of suspended particles with the
fluid components is of the order of the pressure gradient
of the fluid component. For the case of superposed fluids
of different densities the surface tension is effective at the
interface between the fluids.

Thus the linearized perturbation equations of the prob-
lem are

ρ
∂u

∂t
= −∇δp + gδρ + 2ρ(u×Ω) + KN(v − u)

+
∑

s

[
Ts

(
∂2

∂x2
+

∂2

∂y2

)
δzs

]
δ(z − zs) , (1)
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(
τ

∂

∂t
+ 1

)
v = u , (2)

∂δρ

∂t
+ ρ(∇ · u) = 0 , (3)

∇ · u = 0 , (4)
∂δzs

∂t
= ws , (5)

where u(u, v, w), δp and δρ denote the perturbations in
the velocity, pressure and density, respectively. τ = m/K
represents relaxation time for the suspended dust par-
ticles, Ts is the surface tension of interfacial surface,
δ(z−zs) denotes the Dirac δ function. δzs is the perturba-
tion of interfacial surface and the subscript “s” indicates
the interfacial surface.

The disturbance is analyzed in terms of normal mode
analysis. We assume solution of the above equations in
which the perturbations have the space (x, y, z) and time
(t) dependence of the form

exp(ikxx + ikyy + nt) , (6)
where k2 = k2

x + k2
y and n is the growth rate of the

harmonic perturbations.

With these substitutions and the abbreviation D for
d/dz, Eq. (1) is written using Eqs. (2)–(6) in terms of
the perturbation components of velocity u, v, and w as

ρ

[
n +

mNn

ρ(τn + 1)

]
u = − ikxδp + 2ρΩv , (7)

ρ

[
n +

mNn

ρ(τn + 1)

]
v = − ikyδp− 2ρΩu , (8)

ρ

[
n +

mNn

ρ(τn + 1)

]
w = −Dδp +

g

n
(Dρ)w

− k2
∑

s

[
Ts

n
δ(z − zs)ws

]
. (9)

In writing these equations we have made use of the fact
that ρ depends only on z.

We shall now derive an equation for w by eliminating
δp from (9). First by multiplying Eqs. (7) and (8) by ikx

and iky, respectively, and adding the resulting equations,
we obtain

k2δp = −ρ

[
n +

mNn

ρ(τn + 1)

]
(Dw)− 2ρΩξ , (10)

where
ξ = ikxv − ikyu. (11)

If we multiply (7) by − iky and (8) by ikx and add, we
obtain

ξ =
2Ω(Dw)

n + mNn
ρ(τn+1)

. (12)

Making use of (12) into (10), we get

k2δp = −ρ

[
n +

mNn

ρ(τn + 1)

]
(Dw)

− 4Ω2ρ(Dw)
n + mNn

ρ(τn+1)

. (13)

Eliminating δp from (9) with the help of (13) we finally
obtain[

n +
mNn

ρ(τn + 1)

]{
D [ρ(Dw)]−k2ρw

}

+4Ω2

[
n +

mNn

ρ(τn + 1)

]−1

D [ρ(Dw)] +
gk2

n
(Dρ)w

− k4
∑

s

[
Ts

n
δ(z − zs)ws

]
= 0 . (14)

Equation (14) represents the general relation of R–T
instability of two superposed fluids incorporating the ef-
fects of rotation, surface tension in the presence of sus-
pended dust particles. In the absence of suspended par-
ticles dispersion relation (14) reduces to one that is ob-
tained by Sharma [22] ignoring effect of magnetic field
in that case. On neglecting the effect of suspended dust
particles in (14), we get the same result as is obtained
by Chandrasekhar [4] (cf. p. 154, Ch. X). Thus the pres-
ence of suspended dust particles modifies the dispersion
relation of R–T instability in the present problem.

3. Boundary conditions and dispersion relation

Consider two uniform fluids of densities ρ1 (lower fluid)
and ρ2 (upper fluid) separated by a horizontal boundary
at z = 0. In case of the two regions of constant density
(14) reduces to

(D2 − χ2)w = 0 , (15)
where

χ2 = k2

{
1 +

4Ω2

[
n + mNn

ρ(τn+1)

]2

}−1

. (16)

The general solution of (15) can be written in the form
of

w = c1 eχz + c2 e−χz, (17)
where c1 and c2 are two constants.

We assume that the common boundary, which sepa-
rates the two fluids, is located in the plane z = 0 and we
also suppose that the fluids are of infinite extent above
and below this interface.

Since w must vanish both when z → −∞ (in the lower
fluid) and z → +∞ (in upper fluid), we must suppose
that{

w1 = c1 eχz for z < 0,

w2 = c1 e−χz for z > 0,
(18)

where we have chosen the same constant c1 in the solu-
tions for z > 0 and z < 0 to ensure the continuity of w
across the interface at z = 0.

To connect these solutions at z = 0 we require appro-
priate boundary conditions. Following Chandrasekhar [4]
the boundary conditions across the interface are
(i) The velocity w should vanish when z → ∞ (for the
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upper fluid) and z → −∞ (for the lower fluid) i.e. w = 0.
(ii) w(z) is continuous at z = 0.
(iii) The jump condition is obtained by integrating (14)
across the boundary z = zs between zs − ε and zs + ε
and then assuming ε → 0. In view of the continuity of w
across z = zs and the boundness of ρ this limiting pro-
cess gives(

1 +
4Ω2

n′2

)
∆s[ρ(Dw)]

+
(

gk2

nn′

)(
∆sρ− k2Ts

g

)
ws = 0 , (19)

where

n′ = n +
mNn

ρ(τn + 1)
,

and ∆s(f) = f(zs + 0) − f(zs − 0) is the jump, which
a quantity f experiences at the interface z = zs. The
subscript “s” distinguishes the value of a quantity known
to be continuous at an interface, which takes at z = zs;
Eq. (19) can be written as(

1 +
4Ω2

n′2

)
[ρ2(Dw2)− ρ1(Dw1)]

+
gk2

nn′

[
(ρ2 − ρ1)− k2T

g

]
w = 0 . (20)

On substituting the solutions of (18) in (20), we obtain
the following dispersion relation for the R–T instability of
two superposed rotating fluids including suspended dust
particles and surface tension

nn′
(

1 +
4Ω2

n′2

)1/2

= gk

[
ρ2 − ρ1

ρ2 + ρ1
− k2T

g (ρ2 + ρ1)

]
. (21)

Equation (21) represents the dispersion relation for two
rotating dusty fluids of different densities including the
effect of suspended dust particles and surface tension.
This equation can be easily reduced to give the standard
results obtained by Chandrasekhar [4] showing the effect
of surface tension and rotation taken separately on the
R–T instability for two superposed fluids.

4. Discussion of the dispersion relation

We consider the case of two rotating dusty fluids of
different densities superposed upon each other in a grav-
itational field. We have divided this section into some
subsections to consider the individual and combined in-
fluence of all the parameters viz. rotation, suspended dust
particles and surface tension. In all cases we have treated
the problem under the assumption that two infinite fluid
layers are separated by an interface with surface ten-
sion. Many authors, including Chandrasekhar [4], have
adopted free boundaries because they allow for exact so-
lutions of the problem.

4.1. Combined effects of rotation, suspended dust
particles and surface tension

Equation (21) is the dispersion relation of the problem
of R–T instability of two rotating superposed incompress-
ible fluids in the presence of suspended dust particles and

surface tension. In the case of slow rotating fluids to dis-
cuss the R–T instability and stability we assume para-
metric limit (4Ω2/n′2 ¿ 1) and expand (21). Thus we
get

n

[
n +

mNn

ρ(τn + 1)

]{
1 +

2Ω2

[
n + mNn

ρ(τn+1)

]2

}

= gk

[
ρ2 − ρ1

ρ2 + ρ1
− k2T

g(ρ2 + ρ1)

]
. (22)

We have adopted this type of expansion for simplifying
the problem for obtaining some results for R–T instabil-
ity.

On solving (22) the dispersion relation takes the form

n4τ2 + n32τ(1 + α) + n2

{
(1 + α)2 + 2Ω2τ2

−gkτ2

[
ρ2 − ρ1

ρ1 + ρ2
− k2T

g(ρ2 + ρ1)

] }
+ n

{
4Ω2τ

−(2 + α)τgk

[
ρ2 − ρ1

ρ1 + ρ2
− k2T

g(ρ2 + ρ1)

] }
+ 2Ω2

+gk(α + 1)
[
ρ1 − ρ2

ρ1 + ρ2
+

k2T

g(ρ2 + ρ1)

]
= 0 . (23)

Equation (23) represents the general dispersion rela-
tion of R–T instability incorporating the effects of sur-
face tension, slow rotation and suspended dust particles.
In the absence of rotation and surface tension this dis-
persion relation (21) reduces to El-Sayed [34] excluding
dynamic viscosity in that case. Hence the present results
are the improvement of the problem of R–T instability of
two superposed fluids with suspended dust particles and
surface tension. The condition of R–T instability can be
obtained easily from the constant term of (23) and given
as

2Ω2 < gk(α + 1)
[
ρ2 − ρ1

ρ1 + ρ2
− k2T

g(ρ2 + ρ1)

]
. (24)

Thus the system remains unstable for all the values of
rotation smaller than the value given by condition (24).

In order to perform the numerical interpretation on the
growth rate of R–T instability of two superposed slow
rotating plasmas with suspended dust particles we write
the dispersion relation (23) in dimensionless form and we
get

n∗
4
+ 2n∗

3
f∗s (1 + α) + n∗

2

[
f∗

2

s (1 + α)2 + 2Ω∗2

− k

kc
A

(
1− k2

k2
c

) ]

+n∗
[
4Ω∗2f∗s − (2 + α)f∗s A

k

kc

(
1− k2

k2
c

)]
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+
[
2Ω∗2 − k

kc
(α + 1)A

(
1− k2

k2
c

)]
= 0 , (25)

where A = (ρ2 − ρ1)/(ρ1 + ρ2) is the Atwood number,
fs = 1/τ is the relaxation frequency of suspended dust
particles, α = mN/(ρ1 + ρ2) is the mass concentration
of suspended dust particles, kc = [g(ρ2−ρ1)/T ]1/2 is the
critical wavenumber.

n∗ = n/(gkc)1/2, f∗s = fs/(gkc)1/2,

Ω∗ = Ω/(gkc)1/2 , (26)
are the dimensionless parameters.

In Fig. 2 we have depicted the dimensionless growth
rate of R–T instability against the dimensionless
wavenumber to show the effect of small rotation together
with relaxation frequency and mass concentration of sus-
pended dust particles and the Atwood number. The
curves are plotted for various values of small rotation pa-
rameter Ω∗ = 0.0, 0.15, 0.25 and 0.35, respectively. The
values of constant parameters like relaxation frequency
of dust particles, the Atwood number and mass concen-
tration of dust particles are taken to be 1.0, 5.0 and 0.5,
respectively. We find that the growth rate of unstable
R–T mode increases with increase in wavenumber and
by attaining a maximum peak value it gets decreased.
The increase in rotation parameter causes a decrease in
growth rate of R–T instability. Also the peak value of
unstable R–T mode is found to be larger for the mini-
mum value of rotation parameter. The growth rate of
R–T instability is found to be maximal for the case of
no rotation. Hence presence of rotation has stabilizing
influence on the growth rate of R–T instability. It is also
noticed that the presence of the Atwood number, mass
concentration and relaxation frequency affect growth rate
of R–T instability significantly. We have shown the effect
of these parameters on the growth rate of R–T instability
later in Figs. 3, 4, 5 and 8.

Fig. 2. The dimensionless growth rate of unstable R–T
mode versus dimensionless wavenumber for different val-
ues of small rotation parameter (Ω∗) with f∗s = 1.0, A =
5.0, and α = 0.5.

In Fig. 3 we have shown the effect of relaxation fre-
quency of suspended dust particles on the growth rate of
R–T instability. The values of f∗s are taken to be 1.25,

2.25, and 3.35, respectively. The values of constant pa-
rameters are considered as Ω∗ = 0.2 and A = α = 0.5.
We find that the presence of suspended dust particles
has similar behavior to that of the rotation on the growth
rate of R–T instability. Thus relaxation frequency of sus-
pended dust particles has also stabilizing influence on the
growth rate of the unstable R–T mode. The growth rate
in this case is also affected by the presence of small rota-
tion, mass concentration and the Atwood number.

Fig. 3. The dimensionless growth rate of unstable R–T
mode versus dimensionless wavenumber for different val-
ues of relaxation frequency parameter (f∗s ) with Ω∗ =
0.2 and A = α = 0.5.

4.2. Absence of rotation only (Ω = 0)
In the present subsection we deal with the case of su-

perposed hydrodynamic fluids of different densities in-
cluding suspended particles and surface tension. In or-
der to discuss implications of the presence of particles,
we analyze the case for vanishing rotation Ω = 0. In this
case the dispersion relation (23) can be written as

n4 + n32fs(1 + α) + n2

{
f2

s (1 + α)2

−gk

[
ρ2 − ρ1

ρ2 + ρ1
− k2T

g(ρ2 + ρ1)

] }

+n

{
gkfs(2 + α)

[
ρ1 − ρ2

ρ2 + ρ1
+

k2T

g(ρ2 + ρ1)

] }

+gkf2
s (1 + α)

[
ρ1 − ρ2

ρ2 + ρ1
+

k2T

g(ρ2 + ρ1)

]
= 0 . (27)

The condition of R–T instability is obtained from the
constant term of (27), which is given as

k2T

g(ρ1 + ρ2)
− ρ2 − ρ1

ρ1 + ρ2
< 0, or k < kc . (28)

Thus with comparison of (28) to (24) we find that con-
dition of R–T instability gets modified due to the pres-
ence of rotation in the form of (24). Also it is clear that
the relaxation frequency of suspended dust particles does
not play any role in condition of R–T instability but it
affects the growth rate of unstable R–T mode due to the
multiplication in constant term.
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We can consider two different cases:
(a) Stable configuration (ρ1 > ρ2)
In this condition when the lower fluid is heavier than

the upper fluid (i.e. ρ1 > ρ2), relation (27) does not ad-
mit any real positive or complex root with real positive
part giving stability (necessary condition of Hurwitz’s
criterion) of the system. Thus the stable configuration
remains stable even in the presence of suspended dust
particles and surface tension.

(b) Unstable configuration (ρ1 < ρ2)
In this case when the upper fluid is heavier than the

lower one (i.e. ρ2 > ρ1), then (27) will necessarily possess
one real positive root (n0), which leads to instability of
the system.

We obtain dn0/dfs (growth rate with increasing re-
laxation frequency of the suspended dust particles)
from (27):

dn0

dfs
= −[

2n3
0(1 + α) + 2n2

0fs(1 + α)2

−n0gka0(2 + α)− 2gka0fs(1 + α)
]

/{
4n3

0 + 6n2
0fs(1 + α) + 2n0

[
f2

s (1 + α)2

−gka0

]− gka0fs(2 + α)
}

, (29)
where

a0 =
[
ρ2 − ρ1

ρ2 + ρ1
− k2T

g(ρ2 + ρ1)

]
.

Equation (29) gives the following two inequalities:[
2n3

0(1 + α) + 2n2
0fs(1 + α)2

]

≷ [n0gka0(2 + α)− 2gka0fs(1 + α)] , (30)
and[

4n3
0 + 6n2

0fs(1 + α) + 2n0f
2
s (1 + α)2

]

≷ [2n0gka0 + gka0fs(2 + α)] . (31)

If both upper signs of inequalities given in (30) and
(31) are satisfied simultaneously, then the growth rate
dn0/dfs is negative. In the other case, if the upper and
lower signs or vice versa hold, then the growth rate turns
out to be positive. We therefore conclude that the growth
rate of unstable R–T modes is decreased with increas-
ing relaxation frequency of the suspended dust particles.
This means that under the restriction (30) and (31), the
suspended dust particles have stabilizing influence on the
considered system with surface tension.

For numerical interpretation we write the general dis-
persion relation (21) in the presence of suspended dust
particles excluding the effect of rotation as

n3 + n2fs(1 + α) = gkAn

(
1− k2

k2
c

)

+ gkAfs

(
1− k2

k2
c

)
. (32)

Equation (32) can be written in the non-dimensional
form by using (26) as

n∗
3
+ n∗

2
f∗s (1 + α)− (k/kc)An∗

(
1− k2

k2
c

)

− (k/kc)Af∗s

(
1− k2

k2
c

)
= 0 . (33)

Equation (33) is solved numerically for various values
of the non-dimensional parameters. The results are pre-
sented in Figs. 4–6. The stabilizing effect of the relax-
ation frequency of suspended dust particles is shown in
Fig. 4 where we have plotted the real positive root of
growth rate (leading to instability) against dimensionless
wavenumber (k/kc) for various values of the dimension-
less relaxation frequency parameter (f∗s ) taking A = 0.4
and α = 0.6. We find that the growth rate is suppressed
with increase of relaxation frequency and mass concentra-
tion of suspended dust particles. The growth rate of R–T
instability is also affected by the presence of mass con-
centration and the Atwood number as shown in Figs. 5
and 8.

Fig. 4. The growth rate of R–T instability versus di-
mensionless wavenumber for various values of relaxation
frequency of suspended dust particles (f∗s ).

Fig. 5. The growth rate of R–T instability versus di-
mensionless wavenumber for various values of mass con-
centration of suspended dust particles (α).

In Fig. 5, the curves show effect of mass concentra-
tion (α) on the growth rate of R–T instability. The
value of constant parameters are taken to be A = 0.3
and f∗s = 0.4. We find that on increasing the value
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Fig. 6. The growth rate of R–T instability ver-
sus dimensionless wavenumber for various parameters.
Curve I for f∗s = Ω∗ = α = 0 and A = 0.6, curve II for
f∗s = 0.4, A = 0.6, α = 0.7 and Ω∗ = 0.0, and curve III
for Ω∗ = 0.4 and A = 0.6.

Fig. 7. The growth rate of R–T instability versus di-
mensionless wavenumber for various values of small ro-
tation parameter (Ω∗).

of α the growth rate of R–T instability decreases, hence
thereby stabilizes influence of mass concentration on the
growth rate of unstable R–T mode. The effect of the At-
wood number and relaxation frequency is also discussed
on the growth rate of R–T instability. We find that re-
laxation frequency of suspended dust particles stabilizes
the growth rate of R–T instability. In Fig. 6, various
curves show the variation of growth rate for different val-
ues of parameters taken. Curve I represents the classical
results for α = 0.6, curve II and III represent the effects
of suspended dust particles and rotation on the growth
rate of unstable R–T mode, respectively. These calcu-
lations are based on the Mikaelian [19]. The change in
the growth rate of R–T instability due to small rotation
and suspended dust particles is presented and these ef-
fects reduce the growth rate of classical R–T instability
as given by Mikaelian paper [19].

4.3. Absence of suspended dust particles only
(τ = α = 0)

In order to see the effect of slow rotation on the growth
rate of R–T instability, we write the general dispersion
relation (23) in absence of suspended dust particles and

Fig. 8. The growth rate of R–T instability versus di-
mensionless wavenumber for various values of the At-
wood number (A).

we get

n2 + 2Ω2 + gk

[
ρ1 − ρ2

ρ1 + ρ2
+

k2T

g(ρ1 + ρ2)

]
= 0 . (34)

Equation (34) is slightly different from Chan-
drasekhar’s [4] due to expansion of terms existing by the
presence of small rotation in our problem. We get the
condition of R–T instability in this case as

2Ω2 < gk

[
ρ2 − ρ1

ρ1 + ρ2
− k2T

g(ρ2 + ρ1)

]
. (35)

We find that condition (35) differs from condition given
by (24) due to the presence of mass concentration of sus-
pended dust particles in (24). Thus we conclude that
the presence of suspended dust particles modify the R–T
instability criterion.

Equation (34) is written in non-dimensional form using
(26) and we get

n∗
2
+ 2Ω∗2 − k

kc
A

(
1− k2

k2
c

)
= 0 . (36)

In Fig. 7, various curves show the growth rate of R–T
instability for different values of uniform small rotation
parameter Ω∗ = 0.0, 0.1, 0.2, and 0.3. The numerical
value of the Atwood number (A) is taken to be 4.0.
The results of these calculations are presented in Fig. 7,
where the growth rate (positive real part of n∗) is plotted
against the wavenumber k/kc. It can be clearly seen from
the figure that as Ω∗ increases, the growth rate of R–T
instability (n∗) decreases, showing the stabilizing influ-
ence of rotation. The growth rate is found to be maximal
for the case of no rotation.
4.1.3. Absence of both rotation and suspended dust par-
ticles (Ω = τ = α = 0)

In the absence of rotation and suspended dust particles
(Ω = τ = N = 0), the dispersion relation (23) reduces to

n2 − gk

[
ρ2 − ρ1

ρ2 + ρ1
− k2T

g(ρ2 + ρ1)

]
= 0 . (37)

Equation (37) incorporates the effect of surface ten-
sion on the classical R–T instability of two superposed
fluids. This result is identical to Chandrasekhar [4] and
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Mikaelian [8]. The condition of R–T instability is iden-
tical to that as given in (28). Thus, from comparison of
(24) and (28) we find that condition of R–T instability
gets modified due to the presence of rotation and sus-
pended particles in the form of (24).

Equation (37) can be written as

n2 = gkA

(
1− k2

k2
c

)
. (38)

We get the same results as obtained by Chan-
drasekhar [4].

In order to see the effect of density difference between
the fluids (i.e. the Atwood number) on the growth rate
of R–T instability we write (38) in non-dimensional form
using (26) as

n∗
2

=
k

kc
A

(
1− k2

k2
c

)
. (39)

Equation (39) is solved numerically for various values
of the Atwood number. In Fig. 8, we have plotted the
dimensionless growth rate (positive real root n∗) of R–T
instability against the dimensionless wavenumber (k/kc).
From the curves it is clear that the instability region in-
creases with increasing the Atwood number. Thus we
find that the increase in the difference of densities of the
fluids has a destabilizing influence on the considered R–T
configuration.

We now examine the dispersion relation (23) for the
role of rotation with suspended dust particles and sur-
face tension. The dispersion relation (23) for this case
becomes

n4 + n3 [2fs(1 + α)] + n2
[
f2

s (1 + α)2 + 2Ω2 − gka0

]

+n
[
4fsΩ2 − gkfsa0(2 + α)

]

+2Ω2f2
s − gkf2

s a0(1 + α) = 0 . (40)
When the lower fluid is heavier than upper one, then (40)
can be written as

n4 + n3 [2fs(1 + α)] + n2
[
f2

s (1 + α)2 + 2Ω2 + gka0

]

+n
[
4fsΩ2 + gkfsa0(2 + α)

]

+2Ω2f2
s + gkf2

s a0(1 + α) = 0 . (41)
We note that Eq. (41) does not admit any real positive

or complex root with real positive part implying stabil-
ity (necessary condition of Hurwitz’s criterion). Thus
stable configuration remains stable even in the presence
of rotation.

Now we calculate the derivative of the growth rate of
unstable R–T mode (n0) with relaxation frequency of the
suspended particles and rotation. We get from (40)

dn0

dfs
= −[

2n3
0(1 + α) + 2n2

0fs(1 + α)2 + 4n0Ω2

+4fsΩ2 − n0gka0(2 + α)− 2gkfsa0(1 + α)
]

/[
4n3

0 + 6n2
0fs(1 + α) + 2n0f

2
s (1 + α)2 + 4n0Ω2

+4fsΩ2 − 2n0gka0 − gkfsa0(2 + α)
]
. (42)

Equation (42) gives two inequalities

[
2n3

0(1 + α) + 2n2
0fs(1 + α)2 + 4n0Ω2 + 4fsΩ2

]

≷
[
n0gka0(2 + α) + 2gkfsa0(1 + α)

]
, (43)

and
4n3

0 + 6n2
0fs(1+α) + 2n0f

2
s (1+α)2+ 4n0Ω2+ 4fsΩ2

≷ [2n0gka0 + gkfsa0(2 + α)] . (44)
If both upper signs of inequalities given in (43) and

(44) are satisfied simultaneously, then the growth rate
dn0/dfs is negative. In the other case if the upper
and lower signs or vice versa hold then the growth rate
turns out to be positive. Therefore, we conclude that
the growth rate of unstable R–T mode is decreased with
increase in relaxation frequency of suspended dust parti-
cles. This means that under the restriction (43) and (44),
the suspended dust particles have a stabilizing influence
in the presence of rotation.

5. Conclusion

In the present paper, we have analyzed the R–T in-
stability of two superposed fluids taking the effect of
rotation, suspended dust particles and surface tension.
The general dispersion relation for R–T instability is ob-
tained, which is further reduced for some special cases to
see the individual effects of rotation and suspended dust
particles on the condition of R–T instability. The effects
of slow rotation, surface tension and suspended dust par-
ticles are studied on the condition of R–T instability as
well as stability. It is found that the arrangement re-
mains unstable for long wavelength perturbations. For
the case of R–T configuration with combined effect of
surface tension, suspended dust particles and small ro-
tation the system remains unstable for all values of uni-
form rotation, less than the particular value as given by
new condition. The growth rate of the R–T instability
vanishes for critical wavenumber (k = kc) and it is maxi-
mum for the case of zero wavenumber. Below the critical
wavelength (λ < λc) the growth becomes negative and
therefore perturbations of wavelength shorter than the
cut-off wavelength λc are stable. The inclusion of rota-
tion and suspended dust particles stabilizes the growth
rate of R–T instability.

From the graphical illustrations, we conclude that ro-
tation, relaxation frequency and mass concentration of
suspended dust particles all have stabilizing influence on
the growth rate of unstable R–T mode. The peak value
of growth rate is found to be minimum for larger values
of rotation, relaxation frequency and mass concentration
of suspended dust particles. It is also found that the den-
sity difference between the fluids (the Atwood number)
has destabilizing influence on the growth rate of the sys-
tem. The peak value of growth rate remains maximum
for larger values of the Atwood number.

Thus, we have investigated the effect of surface tension
and slow rotation parameters on the R–T instability of
two superposed fluids in the presence of suspended dust
particles.
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