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Electric Dipole Transition Parameters for Low-Lying Levels
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We have calculated the energies of some low-lying levels (6d7s2, 6d27s, 6d7s7p and 6d27p) and electric dipole
transition parameters (wavelengths, oscillator strengths and transition probabilities) between them for neutral
actinium (Z = 89). In the calculations, the correlation and relativistic effects are considered by multiconfiguration
Hartree–Fock method within the framework Breit–Pauli Hamiltonian. The results obtained are compared with
the available experimental and theoretical works in the literature.
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1. Introduction

Some atomic properties as energies (ionization po-
tentials and excitation energies), wavelengths, oscillator
strengths, and transition probabilities are theoretically
and experimentally known for most atoms. This in-
formation is still very fragmentary, especially for rare-
earth atoms including lanthanides (Z = 57 to 70) and
actinides (Z = 89 to 102) having the 4f and 5f sub-
shells. These series have been frequently called as rare-
-earth atoms. The spectra of rare-earth atoms, especially
actinides series, are tremendously complex, and one spec-
trum may contain tens or hundreds of thousands of ob-
servable lines. The difficulty in observing actinide ele-
ments arises from configuration interactions in their spec-
tra. In many cases, a large amount of data is required
for a correct interpretation of the spectra, and, hence,
a large amount of sample material is needed. Another
complexity is capacity of computers. Large scale atomic
structure computations require the repeated evaluation
of many interaction matrix elements, each of which is
the product of a radial and an angular integral. The
results of the angular integrations do not change as the
radial functions are adjusted during the course of a cal-
culation, so they are typically computed at the beginning
and stored. However, quantity of this angular data grows
rapidly with the size of the computer programs capable
of producing accurate atomic data, the storage and re-
trieval of angular data is becoming a serious issue.

The actinide series have valence subshells running from
5f1 to 5f14. Neutral actinium (Ac I ) occupies a par-
ticular place in periodic table and opens the actinide
series although it is not always regarded as belonging
to the actinides because of the lack of a 5f electron in
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the ground configuration. The 5f orbitals tend to be
more diffuse and to lie deeply buried in the core of the
corresponding 4f orbital in the lanthanides. The spec-
tra of actinides are more complicated than of the lan-
thanides. The information on transition energies and ra-
diative transitions is more fragmentary and scarce for
actinides due to these complex spectra. Some lines for
Ac I were classified on internet web site [1] and [2]. The
configuration interaction parameters were calculated for
some heavy atoms by Judd [3]. The theoretical treat-
ment of energy differences between lowest energy levels
for some lanthanide and actinide vapors were investigated
by Nugent et al. and Vander Sluis et al. [4, 5]. Brewer
reported energies of the electronic configurations of the
gaseous ions of the lanthanides and actinides [6]. De-
sclaux calculated the relativistic expectation values for
Z = 1 to Z = 120 by relativistic Dirac–Fock method [7].
The Hartree–Fock calculations of the electronic structure
and energies from hydrogen to lawrencium with two open
shells were made by Mann [8]. The binding energies for
actinides were given using Hartree-Fock (HFR) method
by Rajnak [9]. Köhler et al. reported the first ioniza-
tion potentials of some actinides elements by resonance
ionization mass spectroscopy [10]. Transition energies of
lanthanum, actinium, and eka-actinium were obtained by
the relativistic coupled cluster method by Eliav et al. [11].
The calculation of f–f spectra of lanthanide and actinide
ions by the multiconfiguration Dirac–Fock configuration
interaction method was performed by Seth et al. [12].
Petrov et al. analyzed the Breit interaction in relativis-
tic effective core potential calculations of actinides [13].
Resonance line oscillator strengths for atomic absorption
analysis were given by Doidge [14]. Ionization energies
of the neutral actinides were reported by Sugar [15] (the
values belonging to the revised version of this study can
be found in [16] and [2]).

(563)
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TABLE I
Configurations for even- and odd-parity levels for electric dipole transitions in Ac I .

Configurations
A B C

For even-parity:
6dns2, 6d2ns, 6dnp2, 7snp2, np28s
(n = 7, 8), 7s28s, 7s8s2, 6d3,
6d7s8s, 6d7p8p, 7s7p8p, 7p8s8p

All of the even-parity configura-
tions in A+7s5fnp (n = 7, 8),
6d5f2, 5f7p8s, 5f8s8p

All of the even-parity configura-
tions in B+7s25g, 6d7s5g, 6d25g

For odd-parity:
6d7snp, 6d2np, 7s2np, np3, np8s2

(n = 7, 8), 7s7p8s, 6d7p8s, 6d8s8p,
7s8s8p, 7p28p, 7p8p2

All of the odd-parity configura-
tions in A+6dns5f (n = 7, 8),
7s25f , nd25f (n = 6, 7)

All of the odd-parity configura-
tions in B+6d7p5g, 7s7p5g

The goal of this paper was to find atomic data for neu-
tral actinium (Z = 89) and apply the MCHF method [17]
containing the correlation and relativistic effects (in the
framework Breit–Pauli Hamiltonian) for this atom. We
made similar atomic structure calculations for lanthanum
which has ground state 5d6s2 2D3/2 outside the core [Xe]
in our previous works [18–20]. First, we have here calcu-
lated the first ionization potential for neutral actinium.
The first ionization potential for an element is a fun-
damental physical and chemical property. The accurate
determination of ionization potential aids in identifying
systematic trends in binding energies and in the interpre-
tation of atomic spectra. Actinium has the ground state
6d7s2 2D3/2 outside the core [Rn]. As known, the Breit
effects give a very significant contribution to the physical
and chemical properties of heavy elements. To consider
correlation effects, we have selected three various config-
uration sets outside the core [Rn] denoted by A, B, and C
in Table I. The calculations have been performed by the
MCHF code [21]. Here, we have presented the energies
of low-lying levels and the electric dipole transition pa-
rameters, including wavelengths, oscillator strengths and
transition probabilities, between them according to A,
B, and C configuration sets. Transition parameters are
fundamental quantities for many scientific applications.
These data will be useful to predict and interpret the
spectral output of Ac I .

2. Method of calculation

The atomic state is described by a wave function that
is the solution of the wave equation,

(H − E)Ψ = 0 , (1)
where H is the Hamiltonian and E is the total energy for
the system. In the non-relativistic approximation, H is
described in the form (in atomic units),

HNR = −1
2

N∑

i=1

(
∇2

i +
2Z

ri

)
+

∑

i<j

1
rij

, (2)

where Z is the nuclear charge of atom; ri and rij is the
distance of the i-th electron from the nucleus, and be-
tween the electron i and electron j, respectively. In the
MCHF approximation [17] the wave function Ψ is ex-

panded as a linear combination of orthonormal configu-
ration state functions (CSFs),

Ψ(γLS) =
M∑

i=1

ciΦ(γiLS),
M∑

i=1

c2
i = 1 , (3)

where Φ(γiLS), γi and ci denote configuration state func-
tion in LS coupling, configurations and mixing (or ex-
pansion) coefficients, respectively. Each CSF is a vector
coupled state of one-electron orbitals,

Φnlmlms(r, θ, φ, σ) =
1
r
Pnl(r)Ylml

(θ, φ)χms(σ) , (4)

where the spherical harmonics (Ylml
) and spinors χms are

known. The radial functions Pnl(r) may be known func-
tions such as hydrogenic or may need to be determined.
In the MCHF approximation, the radial functions are
determined in the non-relativistic approximation. Thus,
the total energy is given by

E = 〈ψ(γLS)|HNR |ψ(γLS)〉 =
∑

ij

cicjHij , (5)

where HNR is the Hamiltonian matrix (interaction ma-
trix) with elements

Hij = 〈Φ(γiLS)|HNR |Φ(γjLS)〉 . (6)
Thus, in the MCHF calculations, only coefficients are op-
timized.

In the Breit–Pauli approximation, the Hamiltonian is
expanded to include relativistic corrections. The Breit–
Pauli Hamiltonian is a first order perturbation correction,
(αZ)2, to the non-relativistic Hamiltonian. This Hamil-
tonian is written as a sum in the form

HBP = HNR + HR , (7)
where HR is the relativistic Hamiltonian. This Hamilto-
nian can be divided,

HR = HRS + HFS , (8)
where HRS is the relativistic shift operator including
mass correction (HMC), the one- and two-body Dar-
win terms (HDarwin), spin–spin contact (HSSC) and
orbit–orbit terms (HOO). These corrections shift non-
-relativistic energy without any splitting of the levels.

HFS is the fine structure operator including nuclear
spin–orbit (HSO), spin–other-orbit (HSOO) and spin–spin
terms (HSS). The fine structure contributions split the
non-relativistic energy to closely-spared levels.
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In MCHF approximation, the total energy is an eigen-
value of the HNR, and the expansion coefficients of the
wave function form the corresponding eigenvector,

(H − E) c = 0 , (9)
where

H = Hij . (10)
In the Breit–Pauli Hamiltonian, L and S are coupled

to form a total angular momentum J . Thus, the MCHF
atomic structure package [21] assumes that the radial
functions are known and the wave function is a sum of
configuration states for possibly different LS terms and
has the form

Ψ(γJ) =
∑

LS

∑

j

cj(LS)Φ(γjLSJ) . (11)

The CSFs, Φ(γjLSJ), for a configuration and cou-
pling γj , term LS, and total angular momenta L and
S coupled to J , are built from a basis of one-electron
spin–orbitals. The expansion coefficients, cj(LS) and
corresponding energy E(LSJ), are an eigenvector and
eigenvalue, respectively, of the interaction matrix of these
CSFs as defined by the Breit–Pauli Hamiltonian.

The radiative transition parameters (line strengths, os-
cillator strengths, transition probabilities, lifetime, etc.)
are related with the transitions between two levels, γ′J ′

and γJ . The line strength between two levels can be
written as

Sπk (γJ, γ′J ′) =
∑

M,M ′,q

∣∣∣〈γJM |Oπ(k)
q |γ′J ′M ′〉

∣∣∣
2

, (12)

where the transition operator O
π(k)
q describes each mul-

tipole as a spherical tensor operator of rank k and par-
ity π. A transition probability that occurs between an
upper state γ′J ′ and lower state γJ (emission transition)
can be given by

Aπk (γ′J ′, γJ)

= 2Ck [α (Eγ!J′ − EγJ)]2k+1 Sπk(γ′J ′, γJ)
gJ′

, (13)

where gJ′ is statistical weight of upper level (gJ′ = 2J ′+1)
and Ck is

Ck =
(2k + 1)(k + 1)
k ((2k + 1)!!)2

. (14)

The oscillator strength may refer to transition either
in absorption or emission. The absorption oscillator
strength is

fπk(γJ, γ′J ′)

=
1
α

Ck [α(Eγ′J ′ − EγJ )]2k−1 Sπk(γJ, γ′J ′)
gJ

. (15)

A similar expression can be written for the emission os-
cillator strength where γ′J ′ and γJ are interchanged,
making the emission oscillator strength negative. The
weighted oscillator strength, or gf -value, is completely
symmetrical (except sign) between the two levels. The
weighted oscillator strength is given by

gfπk(γJ, γ′J ′) = gJf
πk(γJ, γ′J ′) . (16)

The electric transitions have the form

E(k)
q =

N∑

i=1

rk(i)Ck
q (i) . (17)

The largest transition is electric dipole E(1) radiation
(A ∝ α2k+1) where k is 1. If the parties of two levels
are denoted by π and π′ and considered π′

π , then

E(k) :
π′

π
= (−1)k. (18)

The electric dipole operator E(1) combines states of
different parties.

3. Results and discussion

In this paper, we have reported the transition parame-
ters including the excitation energies, wavelengths, os-
cillator strengths and transition probabilities of some
low-lying levels for Ac I using the MCHF code within
the framework Breit–Pauli Hamiltonian [21]. Correlation
and the interelectronic relativistic interaction described
by the Breit–Pauli Hamiltonian are important in precise
calculations of heavy atoms, also including actinides. It
is well known that Breit effects grow very rapidly with
increasing nuclear charge. These make important contri-
bution to the physical and chemical properties.

To consider correlation effects we have selected the con-
figuration sets in Table I for understanding the corre-
lation effect. We have to consider these effects for ac-
tinium due to complex spectra of actinides. In partic-
ular we tried to select the configurations including the
5f and 5g orbitals in the B and C, respectively. The
energies important for excitation may be calculated by
increasing the number of configurations including filled
5f shell. Because of the greater 5f radii, 5f–7s and
5f–7p interactions tend to be stronger than the corre-
sponding lanthanides [22]. But in this case, these con-
figurations have complicated the calculations due to the
computer constraints although we varied some parame-
ter values increasingly in the MCHF code for considering
the configurations mentioned in this work. We have not
taken configuration sets including partially filled 5f sub-
shell other than 5f and 5f2 due to the computer and the
MCHF code constraints.

We have also calculated first ionization energy besides
the excitation energies and electric dipole transition pa-
rameters. We have obtained the value 42698.86 cm−1

(5.29 eV) for the first ionization energy of Ac I .
In literature, the values of first ionization energy are
given as 45730 cm−1 [9], 45849 cm−1 [10], 41700 cm−1

(5.17 eV [16], it can be also found in [2] and [23]),
and 5.31 eV [11]. Our result is in very good agreement
especially with [9] and [11]. This agreement with these
other works supports the reliability of our results.
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TABLE II
Energies [in cm−1] of 6d7s2, 6d27s, 6d7s7p and 6d27p levels for Ac I .

Levels
Energies

This work Other work [1]

Conf. Term J A B C

For even-parity:

6d7s2 2D 3/2 0.00 0.00 0.00 0.00

5/2 3271.59 2571.84 2830.00 2231.43

6d2(3F2)7s 4F 3/2 5623.92 6218.47 7086.83 9217.28

5/2 6569.00 7145.69 7987.41 9863.59

7/2 8239.19 8574.27 9517.43 10906.02

9/2 10250.86 10179.00 11129.04 12078.07
2F 5/2 10679.87 12339.86 12506.95 –

6d2(3P2)7s 4P 1/2 11640.25 12485.56 14229.97 –

3/2 11603.58 13485.34 15018.67 –

5/2 12433.90 13615.75 17583.20 –

6d2(3F2)7s 2F 7/2 14324.96 14714.01 14845.31 –

6d2(3P2)7s 2P 1/2 14727.33 – – –

3/2 16710.54 – –

6d2(1G2)7s 2G 9/2 – 15832.00 16461.13 –

6d2(1D2)7s 2D 3/2 12418.01 16000.93 17083.49 –

5/2 – 16386.03 – –

6d2(1G2)7s 2G 7/2 – 16620.19 – –

6d2(1S)7s 2S 1/2 – 25581.35 28680.34 –

For odd-parity:

6d7s(3D)7p 4F 3/2 3715.46 15166.06 14055.77 13712.90

5/2 5082.17 15954.33 15015.83 14940.72

6d7s(3D)7p 4D 1/2 4388.23 17867.23 17456.62 17199.71

6d7s(1D)7p 2D 3/2 – 19166.36 18024.81 26066.04

6d7s(3D)7p 4F 7/2 5966.09 19187.19 17872.90 17683.87
2D 3/2 6719.56 – – 17736.26
4D 7/2 7649.66 20720.98 20417.88 23475.94

6d2(3F2)7p 4G 7/2 10630.74 21018.70 22918.53 32219.62

33756.43

34360.25

6d7s(3D)7p 4P 1/2 6992.32 21516.94 20995.00 22401.52

3/2 7265.88 22119.14 21253.01 22801.10
4F 9/2 8110.04 22136.98 20790.62 –

6d2(3F2)7p 4F 3/2 9592.49 22918.83 23816.27 –

6d7s(3D)7p 4P 5/2 9785.15 23233.45 22359.34 23898.86
2F 5/2 17214.43 – 23327.48 23916.84

7/2 13336.80 – 24266.71 24969.30

6d7s(1D)7p 2F 5/2 – – 36309.08 26836.20

7/2 – – 37915.44 28568.40

6d2(3F2)7p 4G 9/2 11245.86 23646.32 23282.43 32867.39

34788.12

35870.00
4F 7/2 11643.26 25082.44 25257.28 –

6d7s(1D)7p 2P 3/2 – 25479.60 – –

6d2(3F2)7p 4F 9/2 13721.45 25896.89 26143.18 –
4G 11/2 13352.31 26109.94 25682.95 33429.76
2F 5/2 – 27144.98 27662.59 –
4D 3/2 13037.98 27455.76 28254.50 –

6d2(3P2)7p 4D 1/2 16654.95 28088.48 27938.21 –

6d2(3F2)7p 4D 5/2 14018.33 28522.30 29123.49 –
2G 9/2 16721.27 – – –

6d2(3P2)7p 4D 3/2 19402.02 28879.80 28931.90 –
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TABLE II (cont.)

Levels
Energies

This work Other work [1]

Conf. Term J A B C
2S 1/2 15348.50 29172.36 28897.75 –
2D 3/2 26459.02 29655.01 31804.37 –

6d7s(3D)7p 2P 1/2 – 30825.50 30390.51 25729.03

6d2(3P2)7p 4D 7/2 19698.54 32014.36 32101.57 –
2D 5/2 18789.02 46101.40 – –
4P 1/2 19125.59 32344.64 32227.43 –

3/2 – 32814.30 31172.48 –

6d2(1G2)7p 2G 7/2 20781.26 – – –

6d2(1D2)7p 2D 3/2 22206.70 – – –

5/2 23513.47 – – –

6d2(1G2)7p 2H 11/2 22563.39 33370.01 32272.32 –

9/2 21954.28 33903.96 – –

6d2(3P2)7p 2P 3/2 31501.19 34931.06 35066.33 –

1/2 29429.59 35548.52 35877.25 –

6d2(1D2)7p 2F 5/2 22659.79 36496.98 – –

7/2 23293.54 36657.91 – –

6d2(1G2)7p 2G 9/2 20985.65 36946.24 – –

6d7s(3D)7p 4D 3/2 4655.98 19698.97 16283.76 19012.46

6d2(1D2)7p 2P 1/2 22862.77 37530.68 36925.60 –

6d7s(3D)7p 4D 5/2 7427.63 19562.84 18834.66 21195.87

6d2(3F2)7p 4G 5/2 9222.70 21621.73 21153.56 31494.68

32495.67

34658.47
4F 5/2 10471.64 24172.17 24408.46 –

6d2(1S0)7p 2P 1/2 36983.06 – 46000.22 –

3/2 37972.91 49732.39 49518.17 –

6d2(3F2)7p 2G 7/2 13997.27 25516.06 26445.64 –
4D 1/2 12691.17 27333.78 28209.45 –

7/2 – 28358.58 – –
2D 3/2 8238.59 33850.68 36186.00 –
4D 7/2 15333.94 29819.04 30118.61 –

5/2 18136.01 30551.49 30056.72 –
2D 5/2 11017.50 35846.16 37893.21 –

6d2(3P2)7p 4S 3/2 17847.17 32045.19 30831.20 –

6d2(1D2)7p 2P 3/2 21443.11 25479.60 25101.80 –

6d2(3P2)7p 4P 5/2 19966.50 31804.25 31961.99 –

6d2(1G2)7p 2F 7/2 29081.98 37690.79 39634.64 –

5/2 27072.22 39289.99 39667.25 –

The relativistic energies (MCHF+BP) for 6d7s2 and
6d27s even-parity levels and 6d7s7p and 6d27p odd-parity
levels have been reported in Table II. The level energies
are relative to the ground state 6d7s2 2D3/2. It is seen
that the agreement is not very poor when our results
are compared with the other works. In particular, the
calculation results obtained according to B and C con-
figuration sets are generally good. The same results for
6d27p are somewhat poor. 7s27p 2P1/2 level according to
C configuration set is lower than 6d7s7p 4F3/2 level which
is lower odd-parity level in literature. The excitation en-
ergy of 7s27p 2P1/2 is 12686.36 cm−1. Thus it is seen

that the results are better when 5f orbital is included in
configuration set.

In Table III, there are given the electric dipole E(1)

transition data including wavelengths, λ (Å), weighted
oscillator strengths, gf -values, and transition probabil-
ities (or rates), Aki (s−1), for 6d7s2–6d7s7p transition.
The results presented in this table have been obtained
by B and C configuration sets. The level energies ob-
tained using these sets are better than in corresponding
A configuration set. When a comparison of wavelengths
for this transition has been made with existing values in
literature, our results are in agreement.
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TABLE III

Wavelengths, λ [Å], weighted oscillator strengths, gf -values, and transition probabilities, Aki [s−1],
for 6d7s2–6d7s7p transition in Ac I . The superscripts “a” and “b” represent Ref. [1] and Ref. [2],
respectively. The wavelength values taken from Ref. [1] are here converted to Å unit.

Transitions
λ

gf -values Aki
This work Other works

6d7s2 2D3/2–6d7s(3D)7p 2P1/2 3264.85B

3307.04C
3885.56b 6.38× 10−1 B

5.56× 10−1 C
1.99× 108 B

1.69× 108 C

6d7s2 2D3/2–6d7s(3D)7p 2F5/2 4314.90C 4179.98a,b 2.59× 10−1 C 1.55× 107 C

6d7s2 2D3/2–6d7s(3D)7p 4P5/2 4340.81B

4503.01C
4183.12a,b 8.89× 10−2 B

9.17× 10−2 C
5.24× 106 B

5.03× 106 C

6d7s2 2D5/2–6d7s(1D)7p 2D3/2 6098.21B

6647.69C
4194.40a,b 7.06× 10−2 B

7.50× 10−3 C
3.16× 106 B

2.83× 105 C

6d7s2 2D3/2–6d7s(3D)7p 4P3/2 4561.44B

4739.11C
4384.53a,b 2.80× 10−2 B

9.72× 10−3 C
2.24× 106 B

7.22× 105 C

6d7s2 2D5/2–6d7s(3D)7p 2F7/2 4698.20C 4396.71a,b 2.12× 10−1 C 8.02× 106 C

6d7s2 2D3/2–6d7s(3D)7p 4P1/2 10841.79B

7269.45C
4462.73a,b 3.67× 10−3 B

1.86× 10−3 C
1.04× 105 B

1.17× 105 C

6d7s2 2D5/2–6d7s(3D)7p 4P5/2 5160.66C 4613.93b 9.64× 10−2 C 4.02× 106 C

6d7s2 2D3/2–6d7s(3D)7p 4D5/2 5163.53B

5352.55C
4716.58a,b 1.08× 10−3 B

8.73× 10−3 C
4.50× 104 B

3.38× 105 C

6d7s2 2D3/2–6d7s(3D)7p 4D3/2 5127.49B

6198.94C
5258.24b 1.73× 10−1 B

2.59× 10−3 C
1.10× 107 B

1.12× 105 C

6d7s2 2D3/2–6d7s(3D)7p 4F5/2 6345.95B

6727.73C
6691.27a,b 1.84× 10−1 B

1.19× 10−1 C
5.09× 106 B

2.93× 106 C

6d7s2 2D3/2–6d7s(3D)7p 4F3/2 6680.11B

7192.28C
7290.40a,b 8.27× 10−2 B

5.84× 10−2 C
3.09× 106 B

1.88× 106 C

In this work, we have considered only valence corre-
lation where two valence orbitals are excited. If core–
valence (CV) correlation where one core orbital and one
valence orbital and core–core (CC) correlation where two
core orbitals are excited, are taken, the transition results
will be better because the transition calculations depend
on total energy differences. But, CV and CC correlation
models produce a lot of CSFs. In this case, the computer
capacity problems occur for Ac I . In addition, we have
made an application of MCHF+BP method for actinium.
We have obtained good results for excited levels in our
previous works for some lanthanide atoms (La and re-
cently Lu) using this approach. Of course, for elements
with intermediate atomic number, the perturbation the-
ory such as the Breit–Pauli Hamiltonian which allows one
to examine the various relativistic terms on the basis of
the Schrödinger wave function and to include these cor-
rections. In the MCHF+BP approach, the relativistic
effects are taken as the difference between the Dirac and
Schrödinger equation for a given system. In this work,
we have taken this approach for considering the excita-
tion of three electrons in valence shell although actinium
is a heavier element. In such systems it is sufficient, to
the route, to consider only the lowest-order relativistic
corrections to the ordinary Schrödinger equation (Cowan
[22] and Fischer [17]). These corrections can be derived
from the relativistic many-electron equations by expand-
ing in powers of 1/c, where c is the speed of light.

We hope that these data for Ac I are very useful be-
cause the information about the spectrum of this atom

and actinide series is very fragmentary in literature. We
reported new data including valence correlation and rel-
ativistic corrections in Ac I . It is known that the experi-
ments are extremely expensive and difficult and the the-
oretical methods need huge computing facilities or long
time to be worked out for heavy elements such as ac-
tinium. There are a few experimental or theoretical wave-
lengths, oscillator strengths (gf) and transition probabil-
ities (Aki) values for this atom in literature. Therefore,
one of the purposes of performing these calculations is to
apply them in spectrum which provides useful informa-
tion. Reliable atomic data in the study of astrophysical
problems are needed. Recently, the experimental inves-
tigation for physical and chemical properties of heavy
elements including actinides is being developed due to
the synthesis of elements from the “island of stability”.
Therefore we think that these computational data will be
various physical and chemical fields such as the studies of
nucleusynthesis of heavy elements and the investigation
of spectra for rare-earth elements.
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