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For a 3-body Domen-type absorbed-dose graphite calorimeter a refined ordinary differential equation model
is developed taking into account the heat loss through radiation from the surface of all three bodies. The new
reduced heat transfer coefficients, K∗

i , i = 1, 2, 3 were defined and the associated calculated heat loss correction
factors F ∗C and F ∗C+J were determined. The total energy lost by radiation from the core surface was evaluated
for both heating and post heating periods as being 31.35% from the total core heat loss (and up to 1.1% from
the total energy delivered to the core during the heating time). A new correction factor for heat loss through
radiation from the calorimeter bodies’ surfaces was introduced and calculated as being kSB ≈ 0.9996.

PACS numbers: 29.40.Vj, 44.40.+a

1. Introduction

The design of graphite calorimeters depends on knowl-
edge of the mechanisms of heat transfer, the relation be-
tween changes in heat and temperature, and the methods
of temperature measurement and control.

As it is well known, there are three distinct phenomena
connected with heat transfer: convection, conduction and
radiation. Actual primary standard graphite calorime-
ters usually work at air pressures below 0.001 Pa. At such
pressure values only radiative processes can contribute
to heat transfer through air. Indeed, as it is known,
three correlated quantities are important for establish-
ing if the natural convection can occur in air or not: the
air pressure, P , the temperature difference between the
two surfaces, ∆T , and the characteristic distance (the
separation) between the two surfaces, d. Under nor-
mal atmospheric pressure conditions, the dominant mode
of heat transfer through air is usually convection. The
word usually was used to indicate that in actual graphite
calorimeters significant convection does not occur be-
cause of small gaps (1 mm or smaller) and small temper-
ature rises (≈ 10−3 K)∗. In the process of thermal con-
vection, heat is transported by air movement. Below the
pressure value of about 0.1 Pa (i.e. ≈ 10−3 mm Hg) the
fluid model of the air breaks down (because the molec-
ular mean free path of air becomes greater than d) and
the inequality that correlates the three quantities men-
tioned above is satisfied by a factor of 1011 [1]. Since the
usual air pressure in a graphite calorimeter varies in the
interval 10−4 ÷ 10−3 Pa, it comes that in this case the
natural convection is physically quasi-impossible.

∗ It can be shown that natural convection will not occur at atmo-
spheric pressure provided that ∆T is less than 1.1 K [1].

Thus, in most of graphite calorimeters only conduction
and radiation mechanisms can contribute to heat trans-
fer through air. The comparative importance of heat
transfer by conduction through the residual air and by
thermal radiation depends on the vacuum pressure and
on the surface and geometric conditions of the bodies
(the core, the jacket, the shield and the medium).

The phenomenon of conduction through gases is dis-
cussed by numerous authors (e.g. [2–4]). If the mean
free path of the air molecules is smaller than the spac-
ing between the bodies, the heat transfer takes place al-
most entirely by conduction through air. Obviously, the
mean free path of the air molecules, λ, depends essen-
tially on the pressure value. For instance, at near 7 Pa
(i.e. 0.05 mm Hg) λ ≈ 1 mm (this value for air pressure
was chosen because it leads to a mean free path that is
comparable with the usual distances between the bodies
of a graphite calorimeter). This means that for a spac-
ing between the bodies that has a dimension comparable
with 1 mm, if the pressure is greater than 7 Pa then the
heat transfer is almost entirely by conduction through air
and it is quasi-constant. For pressure values below 7 Pa
(which represents a transitional region in this situation)
the conduction through air begins to decrease. Further
decreases of pressure will produce a corresponding lin-
ear decrease of heat conduction. This decrease continues
until the rate of heat transfer by conduction equals the
rate of heat transfer by radiation. For a thermal emis-
sivity value ε = 0.1 this happens when the pressure is
reduced to about 0.5 Pa (≈ 0.004 mm Hg). This rep-
resents the second transitional point because below this
pressure value (assuming that all other parameters are
unchanged) the conduction heat transfer becomes more
and more negligible and the dominant heat transfer phe-
nomenon is the radiation. The schematic representation
of the connection between the air pressure value and the
dominant heat transfer process is given in Fig. 1.
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Fig. 1. Schematic representation of the connection be-
tween the air pressure value and the dominant heat
transfer process.

Taking into account that the usual working values
of the pressure in the graphite calorimeter existing at
ENEA — Istituto Nazionale di Metrologia delle Ra-
diazioni Ionizzanti, Centro Ricerche Casaccia (Roma,
Italy) are about 0.006 Pa, it can be concluded that from
the three possible heat transfer mechanisms through air,
only the radiation remains as significant.

In order to check up if the contribution of the radia-
tive heat loss is indeed significant or if it can be ne-
glected within the measurement uncertainty of the ac-
tual graphite calorimeter operating at ENEA-INMRI, a
theoretical model based on differential heat conduction
equation will be used. Some simplified models of the
temperature exchange have been already presented by
Domen and Lamperti [5] and Janssens et al. [6] in the
case of quasi-adiabatic mode of operation.

Before starting the analysis, a few comments on some
basic difficulties of such a theoretical model (that have
been put into evidence especially by Picard et al. [7, 8])
are worthwhile to be done. As Dr. Picard pointed out,
there are — at least — two major difficulties that arise,
namely:

1. an approach using the heat equation is appropriate
provided that a very stable environment is present;
in fact/usually the laboratory temperature is not
so stable;

2. the heat flow via radiation loss is present, which
will add a term proportional to T 4.

The second observation is actually related to the main
aim of the present report: to analyze the effect of radia-
tive processes on thermal behaviour of a 3-body graphite
calorimeter. This means that radiative heat loss must
be taken into account. From the mathematical point of
view, this fact leads to a differential equation system that
is no longer linear, nor homogeneous. In order to obtain
a unique solution, the resulting Riccati-type equations
must be solved. Since an analytical solution of such equa-
tion system is quasi-impossible to find out, the use of a
numerical approach is unavoidable.

The first difficulty signalized by Picard is more impor-
tant and must carefully be analyzed for each particular
case. In this view, it is important to observe that in

this report T1, T2 and T3 do not represent the tempera-
ture differences with respect to laboratory of the graphite
cylinder, vacuum chamber and laboratory environment
— as in the report of Picard (see Fig. 16 in [7]), but they
represent the temperature rises (K) of the core, jacket
and shield, respectively, above the constant temperature
of the surrounding medium†. Besides, if the graphite
calorimeter works in the quasi-isothermal mode of op-
eration (or constant-temperature operating mode — as
it is named by Daures and Ostrowsky [9] from CEA —
Saclay, DETECS — LNHB, France), then the condition
in the first observation becomes less important. Indeed,
the rapid temperature changes that prevent direct mea-
surement of the temperature differences that determine
heat gain would be eliminated by operating the calorime-
ter in quasi-isothermal mode [10].

Although the present considerations refer only to the
heat loss-compensated mode of operation [11] (when heat
is applied only to the core: P1 6= 0, P2 = P3 = 0),
the base model which takes into account the radiative
heat loss correction (RHLC) remains also valid for quasi-
-adiabatic and quasi-isothermal modes of operation.

2. The RHLC model
As it was also proposed by Picard et al. [8] from BIPM

(France), in order to find the influence on temperature
changes brought by the radiative heat loss, instead the
problem (1) from paper of Janssens et al. [6] (and also
— in an older version — from the paper of Domen and
Lamperti [5]) the following mathematical problem must
be solved:
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and

† The temperature of the medium is kept quasi-constant through
a PID controller.
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In the above relations TM = T0 + Tmedium[◦C ] =
273.15 + 25 = 298.15 K represents the constant medium
temperature in kelvins. The significance and the meth-
ods used to find the expressions and/or the numerical
values for (C), (P ) and (T ) in (1) were explained in de-
tail in [5, 6]. For this reason here only the meaning of the
matrices (K) and (e) will be given‡. In Eq. (1), (e) rep-
resents a coefficient matrix combining the emissivity and
geometrical factors of the bodies in a certain experimen-
tal arrangement (in the present case, the 3-body graphite
calorimeter). The explicit expressions of the matrix ele-
ments ei, i = 1, 2, 3 can be found using both the Stefan–
Boltzmann law and the McAdams [12] approximation for
the net rate of radiative heat transfer between a sus-
pended body and its enclosure. Because the geometric
structure of a Domen-type graphite calorimeter [5] con-
sists of a succession of nested bodies (the medium is in
fact the enclosure for the shield; the shield is the enclo-
sure for the jacket, which in its turn is the enclosure for
the core — see Fig. 2) this approximation proves to be
very good. Thus, the explicit form of the equation sys-
tem (1) becomes
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where
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‡ The appearance of the constant matrices (e3) and (T 4
M) in the

matrix Eq. (1) is due — on the one hand — to the fact that
in the Stefan–Boltzmann law, the absolute temperature of the
corresponding surfaces appear and — on the other hand — to
the nonlinearity in temperature of the same law.
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In relations (7) the subscript letter indices “c”, “j”, “sh”,
“m”, “g” and “My” stand for “core”, “jacket”, “shield”,
“medium”, “graphite” and “aluminized Mylar” respec-
tively, whereas superscript letter indices “int” and “ext”
stand for “interior” and “exterior”, respectively.

Fig. 2. Schematic configuration of the vacuum gaps in
the ENEA-INMRI graphite calorimeter (not at scale).
The data in this figure were obtained through the ami-
ability of Dr. A.S. Guerra from ENEA-INMRI, Italy.

Although the influence of the nonlinearity in the equa-
tions is virtually undetectable, the authors preferred to
use the difference§ (TM +T1)4−(TM +T2)4 instead of lin-
ear approximation 4T 3

M(T1−T2) because, firstly, an exact
solution is always preferable to an approximate one and,
secondly, there is no real difficulty in mathematical han-
dling of this nonlinear term.

Most of the authors use the value of εMy ≈ 0.1 for the
emissivity of aluminized Mylar, but, as it was observed
by Domen [13]: “a significant error may result when one
calculates the heat transfer by radiation using a value
of ε from the literature”. Thus, in this report, for the
emissivity of aluminized Mylar the value determined by
Domen [13] was considered, εMy = 0.044. Concerning
the emissivity of graphite, the situation is more or less
the same. Although for convenience many authors use
“the typical” value of εg ≈ 0.9, in fact there is a big num-
ber of reliable references (see for instance [1, 14, 15]), in
which a value closer to 0.8 or less is reported. For this
reason, in the present report for the graphite emissivity
the value εg = 0.82 was considered, corresponding to a
relatively small absolute temperature interval centred on

§ And all similar other.
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298 K. Taking all these considerations into account, for
the particular geometry of the actual graphite calorime-
ter existing at ENEA-INMRI (see Fig. 2), the following
numerical values of the matrix elements ei, i = 1, 2, 3
were found:




e1 = 0.232× 10−11 W K−4;
e2 = 0.344× 10−11 W K−4;
e3 = 1.157× 10−11 W K−4.

(8)

For the geometry of the same graphite calorimeter
the matrix element e4 ≡ emedium–environment = 5.559 ×
10−11 W K−4 was also evaluated, which can be even-
tually used to solve the corresponding problem for an
improved 4-body calorimeter model. It is worth to spec-
ify that all the numerical values of ei, i = 1, 2, 3, 4 are
affected by some small errors due to having neglected
the influence of the supports that keep each body in its
own fixed place. For instance, the cross-sectional area of
the three small polystyrene supports of the core was ne-
glected (Asupports

c = 0.589×10−6 m2 and it is only 1/1360
of Ac). In this model it is assumed that the temperature
measured by the sensing thermistors represents the aver-
age surface temperature of the corresponding bodies, the
Mylar is assumed to be in good enough thermal contact
with the graphite and have negligible heat capacity and
finally, the relaxation time for the graphite was also ne-
glected because of its relative high thermal conductivity.

Concerning the significance of the (K) matrix it is
worthwhile mentioning from the beginning that its ele-
ments — i.e. the heat transfer coefficients Ki (i = 1, 2, 3)
— do not coincide with those in reports of Domen
et al. [5], who wrote the system (1) without radiative
heat loss terms. Moreover, the heat transfer coefficients
Ki (i = 1, 2, 3) defined in this paper also differ from those
introduced by Janssens et al. [6]. In their model, Janssens
et al. supposed that besides the heat transfer between the
core and jacket there is also a direct heat transfer from
core to shield — wrote the system (1), without radiative
heat loss terms, in the form




C1Ṫ1 = P1 −K1 (T1 − T2)−K0 (T1 − T3) ,

C2Ṫ2 = P2 + K1 (T1 − T2)−K2 (T2 − T3) ,

C3Ṫ3 = P3 + K2 (T2 − T3) + K0 (T1 − T3)−K3T3,

(9)
where K0 = 1.78 × 10−5 W/K was introduced on the
ground of discrepancies between theoretical and exper-
imental heat loss corrections [16] and it represents “the
direct” heat transfer coefficient (W/K) between the core
and shield).

To better understand this statement let us take a deep
sight on the physical significance of the heat transfer co-
efficients.

From a pure theoretical point of view, when a graphite
calorimeter is operated in the adiabatic mode no heat
transfer would take place. However, in practice there is a
non-zero heat transfer across the boundaries of the bod-
ies. The causes of this heat transfer are multiple: radia-
tive processes, heat conduction through the thermistor

wires, heat conduction and convection through the resid-
ual air, heat conduction through the supports of the bod-
ies etc. This is why the name “quasi-adiabatic” instead of
“adiabatic” is used for the corresponding operating mode
of a graphite calorimeter.

Let us suppose that the calorimeter is operated in the
quasi-adiabatic mode. In an electrical calibration run,
equal powers are dissipated in both the core and jacket:
P1 = P2 6= 0, but the temperature response of only
the core is measured with the Wheatstone bridge circuit
shown in Fig. 3.

Fig. 3. The electrical circuit used for measuring the
core temperature response in the quasi-adiabatic mode
of operation.

Of course, some of the above enumerated causes that
lead to heat losses prove to be more important and so,
they must be first taken into account. For instance, as
already was shown by some authors (e.g. [1]) the radia-
tive heat loss from the core is the dominant¶ form of
heat loss for this calorimeter body in the experimental
measurements, whereas all other mechanisms have con-
siderable smaller effects.

If P1 is the power supplied to the core during a run of
duration th, the input energy EC (the energy supplied to
the core during the run) can be expressed as

EC =
∫ th

0

P1dt , (10)

and, if the calorimeter could be operated adiabatically,
then all this amount of energy would be used to increase
the core temperature. In this case, with T1(0) = 0, the
core temperature increase is determined by

Eadiabatic
C =

∫ th

0

P1dt = C1T1(th) . (11)

Since the heating process of the core is not quite adi-
abatic (there is a heat loss from the core to its en-
vironment) the temperature rise of the core is smaller
than T1(th). In order to express quantitatively the fact

¶ “The average rate of radiative heat loss from the sample surface
[has] peak losses [. . . ] that are approximately two orders of mag-
nitude greater than the conductive losses from the sample along
the connecting thermistor leads [. . . ] and is within 40% of the
observed heat loss in the measurements” [1].
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that there is a non-zero heat transfer from the core to
the jacket, usually a coefficient K1 is introduced∗∗. If
dEC = P1dt is the energy delivered to the core during
the infinitesimal time interval dt and dW is the infinites-
imal energy loss due to the heat transfer (through all
possible mechanisms) from the core to the jacket during
the same time interval (dt), then the energy conservation
law writes

dEC − dW = C1dT1 , (12)
where dT1 is the corresponding infinitesimal temperature
rise of the core. Obviously, dW is proportional to both
dt and T1 − T2 (the temperature difference between the
two bodies: the core and the jacket). This proportional-
ity can be transformed into an exact equality through a
coefficient which is commonly denoted by K1:

dW
def.= K1 (T1 − T2) dt, (13)

and thus, the relation (16) becomes
dEC −K1 (T1 − T2) dt

= (P1dt−K1 (T1 − T2) dt =) C1dT1 . (14)

The relation (13) can be regarded as the definition-
-relation of the coefficient K1. With T1(0) = 0, the inte-
gral form of relation (14) reads

EC −K1

∫ th

0

(T1 − T2) dt = C1T1(th) (15)

and it permits to introduce the “calculated heat loss cor-
rection factor” FC [5] through

FC =
K1

∫ th
0

(T1 − T2) dt

C1T1(th)
< 1 , (16)

which actually represents the ratio between the lost
energy W (th) and the energy “absorbed” by the core,
C1T1(th) (which would be equal to the energy delivered
to the core if there would be no heat loss, i.e. in the
ideal/adiabatic case). The magnitude of this correction
factor is a measure of the heat loss correction uncertainty;
the smaller the calculated heat loss correction factor, the
smaller the heat loss correction uncertainty is. In prin-
ciple, there are at least two possible ways to reduce the
size of FC. As it was already shown by Domen and Lam-
perti [5], one method to reduce the magnitude of this
correction factor is to use the “C+J” mode of operating a
graphite calorimeter. In this case only the core is heated
(P2 = P3 = 0) and the core-plus-jacket temperature rise
is measured by using the circuit in Fig. 4. The expres-
sion of heat loss correction factor for this case, FC+J can
be theoretically determined using the first two equations
in (9), in which all ei factors cancel, and P2 = 0. The
result is

∗∗ This coefficient is named “heat transfer coefficient between the
core and jacket” and in SI it has the measurement units W K−1.
Let us note that similar coefficients are also introduced for the
heat transfers between the other bodies of a graphite calorimeter.

FC+J =
K2

∫ th
0

(T2 − T3) dt

C1 [T1(th) + T2(th)]
, (17)

and it can be shown that FC+J < FC (see Ref. [5], p. 599).

Fig. 4. The electrical circuit used for measuring the
core-plus-jacket temperature response in the heat loss-
-compensated mode of operation.

From definition relation of FC it results that for a
given graphite calorimeter (i.e. for a fixed C1) another
way to decrease the correction factor FC is to “reduce”
the magnitude of the heat transfer coefficient K1. This
can be done because — from the way in which the heat
transfer coefficients were introduced/defined — they
“implicitly contain” the contributions from all possible
heat loss mechanisms. If, for instance, all the terms that
correspond to all these possible heat loss channels could
be known — which is the best case — then all heat
transfer coefficients must “disappear”, being replaced by
the sum of all these (presumable known) terms

Ki = K
body surf.(rad.)
i + K

wires(cond.+rad.)
i

+K
resid.air(cond.)
i + K

supports(cond.)
i , i = 1, 2, 3 .

Of course, in principle, for all these terms simple ana-
lytical expressions can be written down and correspond-
ing numerical estimates can be found; this is a relatively
easy task. But to find exact theoretical expressions for all
these terms is a quite difficult task, because for doing this,
the real spatio-temporal temperature distribution for all
three bodies must be known (do not forget that during
a calibration run the bodies are heated non-uniformly).
Generally speaking, any known such term reduces†† the
size of the corresponding heat transfer coefficient by a
certain amount.

†† This method is a structural one because it takes into account the
intimate “structure” of the heat transfer coefficients. Of course,
for a given calorimeter the absolute/total value of any heat trans-
fer coefficient remains in fact the same, but using this method
any such transfer coefficient can be divided in one known part
(containing all analytically exact-determinable heat losses) and
a second “unknown” part (which contains all contributions to the
total heat loss that cannot be expressed in a definite analytical
form).
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There are — at least — two experimental methods to
find the heat transfer coefficients [16]. One of them —
which is most frequently considered — uses the equilib-
rium temperature differences between the bodies, reached
upon constant power dissipation in one or more heaters.
Thus, for K1 this method gives the following analytical
expression:

K1 =
P1

T1(∞)− T2(∞)
, (18)

where T1(∞) and T2(∞) can be experimentally deter-
mined.

Now, if only the radiative heat loss channel is consid-
ered (to be known in an analytical form), from the first
equation in (6) the new “reduced” heat transfer coeffi-
cient K∗

1 can be defined as follows:

K∗
1

def.=
P1

T1(∞)− T2(∞)

−
e1

{
[TM + T1(∞)]4 − [TM + T2(∞)]4

}

T1(∞)− T2(∞)
not.= K1 −Krad

1 < K1 (19)
and the corresponding “reduced” heat loss correction fac-
tor is defined by

F ∗C ≡
K∗

1

∫ th
0

(T1 − T2) dt

C1T1(th)
= FC

−
e1

∫ th
0

[
(TM + T1)

4 − (TM + T2)
4
]

dt

C1T1(th)
not.= FC − F rad

C < FC , (20)
where FC is “the old” calculated heat loss correction fac-
tor (given by relation (16)).

Analogously, the new “reduced” heat transfer coeffi-
cient K∗

2 can be written in terms of K2 as follows:

K∗
2

def.=
P1

T2(∞)− T3(∞)

−
e2

{
[TM + T2(∞)]4 − [TM + T3(∞)]4

}

T2(∞)− T3(∞)

= K2 −
e2

{
[TM + T2(∞)]4 − [TM + T3(∞)]4

}

T2(∞)− T3(∞)
not.= K2 −Krad

2 < K2 , (21)
and, for the “C+J” mode of operation,

F ∗C+J ≡
K∗

2

∫ th
0

(T2 − T3) dt

C1 [T1(th) + T2(th)]
= FC+J

−
e2

∫ th
0

[
(TM + T2)

4 − (TM + T3)
4
]

dt

C1 [T1(th) + T2(th)]
not.= FC+J − F rad

C+J < FC+J < FC , (22)
where FC+J is that given by relation (17).

Besides, K3 and K∗
3 are connected by the following

relation:

K∗
3

def.=
P1

T3(∞)
−

e3

{
[TM + T3(∞)]4 − T 4

M

}

T3(∞)

= K3 −
e3

{
[TM + T3(∞)]4 − T 4

M

}

T3(∞)
not.= K3 −Krad

3 < K3 . (23)
Because the small temperature rise of the shield (when

the calorimeter is operated in the heat loss-compensated
mode) can lead to a very inaccurate measurement, is
better to determine K3 by other means. There are at
least two possibilities: (i) by analytical means, using the
Stefan–Boltzmann law (as it was calculated by Domen
and Lamperti [5]); (ii) using an alternative definition re-
lation, K3 = P3/T3, with P1 = P2 = 0, P3 > 0 (as it was
determined by Paulsen et al. [17]). In this last case the
new “reduced” heat transfer coefficient K∗

3 can be defined
as:

K∗
3

def.=
P3

T3(∞)
−

e3

{
[TM + T3(∞)]4 − T 4

M

}

T3(∞)

= K3 −
e3

{
[TM + T3(∞)]4 − T 4

M

}

T3(∞)
not.= K3 −Krad

3 < K3 . (24)
Having in view the above considerations, the equation

system (6) must be rewritten as follows:



C1Ṫ1 = P1 −K∗
1 (T1 − T2)

−e1

[
(TM + T1)

4 − (TM + T2)
4
]
,

C2Ṫ2 = P2 + K∗
1 (T1 − T2)

−K∗
2 (T2 − T3) + e1

[
(TM + T1)

4 − (TM + T2)
4
]

−e2

[
(TM + T2)

4 − (TM + T3)
4
]
,

C3Ṫ3 = P3 + K∗
2 (T2 − T3)−K∗

3T3

+e2

[
(TM + T2)

4 − (TM + T3)
4
]

−e3

[
(TM + T3)

4 − T 4
M

]
,

(25)
where the new reduced heat transfer coefficients K∗

i (i =
1, 2, 3) are defined by relations (19), (21) and (23), (24).
Moreover, the presence of a supplementary coefficient K0

in the model proves to be unnecessary‡‡.

3. Results and discussion

For a three-body Domen-type graphite calorimeter de-
scribed by the characteristics given in Table, the numer-
ical solution of system (25) is graphically presented in
Figs. 5 to 11 for two cases: (a) th = 100 s of heating
followed by tp = 600 s of relaxation/post-heating time
(Figs. 5 to 9) and (b) th = 1000 s of heating followed by
2000 s of relaxation (Figs. 10 and 11).

‡‡ If the heat loss from the core through its supports and wires
are taken into account the introduction of K0 has no concrete
physical support/meaning and thus becomes what in fact it is:
an “artificial” way to solve the problem of discrepancies between
the theory and experiment.
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To put into evidence the effect of the RHLC on each
calorimeter body, in both cases the solution is given (i)
without considering the radiative heat loss correction
(black curves) and (ii) considering the radiative heat loss
correction (red curves). Because the curve correspond-
ing to the temperature rise of the shield is too close to
the time axis, each of four “double” curves in Fig. 5 are

presented separately in Figs. 6, 7, 8 and 9. Because of
the same reason, this was also done for Fig. 10, but only
for the double curve corresponding to the shield (that is
presented separately in Fig. 11). In all the figures the su-
perscript “c” indicates that the case when heat is applied
only to the core (P1 6= 0, P2 = P3 = 0) was considered.

TABLE
The numerical values of the main quantities involved in the model.

Quantity Symbol Value
heat capacity of the core C1 1.081 J K−1

heat capacity of the jacket C2 1.081 J K−1

heat capacity of the shield C3 92 J K−1

HTC∗ between the core and jacket K1 0.785× 10−3 W K−1

HTC between the jacket and shield K2 1.109× 10−3 W K−1

HTC between the shield and medium K3 5.2× 10−3 W K−1

HTC between the core and jacket in the RHLC model K∗
1 0.539× 10−3 W K−1

HTC between the jacket and shield in the RHLC model K∗
2 0.744× 10−3 W K−1

HTC between the shield and medium in the RHLC model K∗
3 3.973× 10−3 W K−1

aluminized Mylar emissivity εMy 0.044
graphite emissivity εg 0.82
RHLC coefficient between the core and jacket e1 0.232× 10−11 W K−4

RHLC coefficient between the jacket and shield e2 0.344× 10−11 W K−4

RHLC coefficient between the shield and medium e3 1.157× 10−11 W K−4

area of the core surface Ac 8.011× 10−4 m2

area of the interior surface of the jacket Aint
j 9.5× 10−4 m2

area of the exterior surface of the jacket Aext
j 11.91× 10−4 m2

area of the interior surface of the shield Aint
sh 14.06× 10−4 m2

area of the exterior surface of the shield Aext
sh 86.26× 10−4 m2

area of the interior surface of the medium Aint
m 95.98× 10−4 m2

constant temperature of the medium TM 298.15 K
heating time th 100 s (1000 s)
post heating time tp 600 s (2000 s)
constant power applied to the core P1 9.8× 10−5 W
residual air pressure p 5.57× 10−3 Pa
∗HTC = heat transfer coefficient.

Figure 6 shows that in the case (a) the core temper-
ature rises to a maximum and decreases after power is
turned off. The jacket and shield temperatures rise more
slowly, since these components are not heated directly
(P2 = P3 = 0), and continue to rise monotonously after
power is turned off (see Figs. 7 and 8). For the case (b)
the shape of the corresponding curves is quasi the same
like in the case (a), with one exception: that regarding
the jacket. When the core is heated for 1000 s, the jacket
temperature rises slowly to a maximum which does not
correspond to the end of the heating time (like in the
core case). It continues to rise for some time after power

is turned off, then it reaches a maximum and after this
it begins to decrease (see Fig. 10).

As Figs. 5, 6 and 10 show, in both (a) and (b) cases the
effect of considering the RHLC for the core is a diminu-
tion of temperature (the red curves are below the corre-
sponding black ones), and this feature lasts for the entire
process (heating and post-heating periods).

On the contrary, the same effect on the jacket and
shield is an increase of temperature (the red curves are
situated above the corresponding black ones), and again
a particular behaviour is exhibited by the jacket in the
case (b) — long heating time. As Fig. 10 shows, in this
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Fig. 5. Three-body calorimeter model with and with-
out radiative heat loss correction (RHLC) for th = 100 s
of heating.

Fig. 6. Relative core’s temperature–time behaviour of
the three-body calorimeter for th = 100 s of heating.

Fig. 7. Relative jacket’s temperature–time behaviour
of the three-body calorimeter for th = 100 s of heating.

Fig. 8. Relative shield’s temperature–time behaviour
of the three-body calorimeter for th = 100 s of heating.

Fig. 9. Relative (core + jacket)’s temperature–time
behaviour of the three-body calorimeter for th = 100 s
of heating.

Fig. 10. Three-body calorimeter model with and with-
out RHLC for th = 1000 s of heating.

particular case there is an intersection point of the red
and black jacket curves, where the relative position of
the two curves changes. For both short and long heat-
ing times the core is a thermal radiator (it always radi-
ates thermal energy towards its surroundings, i.e., the
jacket). Apart for the case (b) regarding only the jacket,
the shield and jacket are receivers for this kind of energy.
The radiated thermal energy balance is positive for the
jacket and shield (this means that these bodies receive
more thermal energy than they emit), and it is always
negative for the core.

However, if the heating time is long enough (like in the
case (b)) the intermediary body (i.e. the jacket) changes

Fig. 11. Relative shield’s temperature–time behaviour
of the three-body calorimeter for th = 1000 s of heating.
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its role one time during the entire process. Indeed, as
Fig. 10 shows, in the first part of the process (up to the
time ti, when the two corresponding jacket curves in-
tersect each other) the jacket is globally a receiver (it
receives more radiative heat from the core than it emits
towards the shield), while in the second part of the pro-
cess it becomes a radiator (i.e. it emits more thermal
energy towards the shield than it receives from the core).

This behaviour is normal because the jacket plays the
role of a “buffer” for the process of radiative heat change
between the core and shield: first, the jacket is heat-
ing since it receives more energy from the core than it
emits towards the shield, but while the core is cooling,
the jacket begins to emit the received energy towards the
shield. In other words, when the core is hot enough it can
play the role of a radiator for both surrounding bodies
(the jacket and shield) because it can sustain the heat-
ing of both the bodies, but when it cannot maintain this
situation (i.e. when it loses enough energy§§), the jacket
takes this role in its turn but only for the shield (as it is
normal).

During the initial part of the heating process, due to
the small differences between the numerical values of tem-
perature rises corresponding to the two cases (with and
without RHLC), the red curves overlap on some portions
of the black ones, especially for the core (see Figs. 5, 6,
9 and 10). Because of this it was preferred to represent
both separately and all together the corresponding differ-
ences, ∆Ti ≡ Twithout RHLC

i −Twith RHLC
i , as functions of

time (i = 1, 2, 3, 4 stand for core, jacket, shield and (core
+ jacket), respectively). The amount of these differences
and their relative magnitudes emerges with a more clarity
from Figs. 12 to 15 and Fig. 16, respectively. Besides, the
corresponding ∆Ti (i = 1, 4) differences for th = 1000 s
of heating were graphically represented in Fig. 17, only
for a comparison with dependences depicted in Fig. 16.

From Figs. 12 to 15 it results that for th = 100 s of
core heating the maximum absolute values of the differ-

Fig. 12. Temporal dependence of ∆Tc for 100 s of
heating.

§§ This “enough energy” is determined by the intersection point of
the red and black jacket curves in Fig. 10.

Fig. 13. Temporal dependence of ∆Tj for 100 s of
heating.

Fig. 14. Temporal dependence of ∆Tsh for 100 s of
heating.

Fig. 15. Temporal dependence of ∆Tc+j for 100 s of
heating.

ences between the two cases (with and without consider-
ing RHLC) are as follows:

• 0.68 mK for the core — and it is obtained at the
end of post heating time;

• 0.33 mK for the jacket — and it is obtained after
about 460 s from the initial moment;

• 4.66 µK for the shield — and corresponds to the
end of post heating time;

• 0.4 mK for the core plus jacket — and corresponds
to the end of post heating time.
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Fig. 16. Time dependences of ∆Ti (i = 1, 4) for both
heating and post heating time (700 s — the entire
process).

The total energy lost by radiation from the core surface,
W rad

C |t∈[0,th], during the heating period t ∈ [0, th] is given
by

W rad
C

∣∣
t∈[0,th]

= e1

∫ th

0

{
[TM + T1(t)]

4 − [TM + T2(t)]
4
}

dt

=
σAc

1
εg

+ Ac
Aint

j

(
1

εMy
− 1

)

×
∫ th

0

{
[TM + T1(t)]

4 − [TM + T2(t)]
4
}

dt , (26)

where the relation (7a) was used.
The temperature functions T1(t) (for the core) and

T2(t) (for the jacket) are the solutions of equation sys-
tem (25) and they are graphically represented in Figs. 18
and 19, respectively. Because an explicit analytical form
for these functions cannot be found, an integration of
only numerically available solutions for T1(t) and T2(t)
must be done. As Figs. 18 and 19 show, the functions
T1(t) and T2(t) have a smooth enough variation on their
definition intervals, and so, using an appropriate inter-
polation method, each of them can be precisely approx-
imated by one polynomial only over the entire variation
range. One of the best — and at the same time the easy
— way to approximate a function which is given through
points by a polynomial of an arbitrary order is to use the
“FindFit” built-in-function in Mathematica 5.0 software.
In the linear case, this function finds a globally optimal
fit, whereas in the nonlinear case it generally finds a lo-
cally optimal fit. “FindFit” finds a least-squares type-fit
and accepts many useful options (e.g.: PrecisionGoal,
WorkingPrecision, AccuracyGoal, MaxIterations etc.) to
improve the precision, accuracy and speed of calculations.

Because the time variation of the core temperature
for t ∈ [0, 100] is quasi-linear, a third-order polynomial
was judged to be good enough to approximate with suf-
ficient accuracy this function. For the jacket temper-
ature a fourth-order polynomial was chosen, since the
time variation of this function is bigger than that corre-
sponding to the core (see Figs. 18 and 19). Making the
calculations by setting the WorkingPrecision to Machine-

Fig. 17. Time dependences of ∆Ti (i = 1, 4) for both
heating (th = 1000 s) and post heating time.

Fig. 18. Time dependence of the core temperature for
th = 100 s of heating.

-Precision (53 log10 2 ≈ 16) for the two functions the fol-
lowing approximations were found:

T h
1 (t) ≡ T heating time

core (t) ≈ c0h + c1ht + c2ht2 + c3ht3,

T h
2 (t) ≡ T heating time

jacket (t)

≈ j0h + j1ht + j2ht2 + j3ht3 + j4ht4, (27)
with

c0h = 9.57105× 10−9, c1h = 0.0000906548,

c2h = −3.28062× 10−8, c3h = 1.444× 10−11,

j0h = −2.06305× 10−10, j1h = 6.67897× 10−11,

Fig. 19. Time dependence of the jacket temperature
for th = 100 s of heating.
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j2h = 3.28941× 10−8, j3h = −2.70332× 10−11,

j4h = 1.33175× 10−14. (28)
Using these data, the necessary values from Table and

relation (26) as well, for the core radiative heat loss dur-
ing the heating period the value was obtained

W rad
C

∣∣
t∈[0, 100]

= 106.35 µJ , (29)

which represents 31.35% of the total core heat loss,
W tot

C |t∈[0, 100] = 0.339 mJ, during this time interval,
and 1.1% of the total energy delivered to the core, Ec =∫ th
0

P1 dt = 9.8 mJ. Let us note that for a configuration
which is equivalent to a two-body graphite calorimeter
Shipley and Duane [1] found a value of about 40% for
the first percentage.

For the post heating period the time variations of the
core and jacket temperatures are graphically presented
in Figs. 20 and 21, respectively. Since both these time
variations cannot be considered linear at all, in this case
two corresponding fourth-order polynomials were chosen
to approximate the functions T1(t) and T2(t) over their
entire variation range, t ∈ [100, 700] s.

Fig. 20. Time dependence of the core temperature for
post heating time, t ∈ [100, 700] s.

Fig. 21. Time dependence of the jacket temperature
for post heating time, t ∈ [100, 700] s.

Following an analogous procedure like in the last case
(for the heating period), these polynomials were found to
be given by

T ph
1 (t) ≡ T post heating

core (t)

≈ c0p + c1pt + c2pt2 + c3pt3 + c4pt4,

T ph
2 (t) ≡ T post heating

jacket (t)

≈ j0p + j1pt + j2pt2 + j3pt3 + j4pt4, (30)

where
c0p = 0.00940966, c1p = −7.0584× 10−6,

c2p = 5.0666× 10−9, c3p = −2.81651× 10−12,

c4p = 7.97081× 10−16, j0p = −0.000354319,

j1p = 7.39546× 10−6, j2p = −8.6942× 10−9,

j3p = 5.32405× 10−12, j4p = −1.53395× 10−15,(31)
and for the corresponding core radiative heat loss the
value was found

W rad
C

∣∣
t∈[100, 700]

= 872.71 µJ , (32)

representing 31.35% of the total core heat loss,
W tot

C |t∈[100, 700] = 2.78 mJ, during the post heating
period.

Let us now determine the effect of the radiation heat
loss correction on the absorbed dose to graphite. To this
end a relation between the new calculated heat loss cor-
rection factors F ∗C and F ∗C+J, and the absorbed dose to
graphite, Dg, must be found. Having in view the def-
inition of Dg, it comes out that it is sufficient to find
a relationship between the radiation energy absorbed in
the core, Er

C, and the above-mentioned two factors. This
can be done if radiation runs in the C-mode are com-
pared with calibration runs in the C+J-mode; it results
a convenient formula for Er

C which does not directly con-
tain the heat capacities of the calorimeter bodies

Er
C = f

(
Ec

C+J, T
c
1m, T r

1m, T c
2m

) 1 + F r
C

1 + F c
C+J

, (33)

where f(Ec
C+J, T

c
1m, T r

1m, T c
2m) is a factor function which

depends only on the measured calibration energy, Ec
C+J,

and measured temperature rises T c
1m, T r

1m and T c
2m, while

F r
C and F c

C+J are the calculated heat loss correction fac-
tors (for a radiation run¶¶ in the C-mode and for an
electrical calibration run in the C+J-mode, respectively).
Thus, taking into account the (20) and (22) relations, it
results that the searched relationship can be written as
follows:

Dg = A
1 + (F r

C)∗ + (F r
C)rad

1 +
(
F c

C+J

)∗ +
(
F c

C+J

)rad
, (34)

where A is a proportionality factor which depends on the
function factor f and the mass of the core, but is indepen-
dent with respect to any calculated heat loss correction
factor. As it can be seen from relation (34), the radiated
heat loss influences the absorbed dose Dg through the ra-
diative components of the calculated heat loss correction
factors, (F r

C)rad and (F c
C+J)

rad. If the absorbed dose in

¶¶ The lower case superscript index “r” refers to a radiation run,
whereas “c” designates an electrical calibration run.
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the core graphite without considering the effect of radia-
tive heat loss correction is defined by

D∗
g = A

1 + (F r
C)∗

1 +
(
F c

C+J

)∗ , (35)

then a new correction factor for the expression of Dg can
be introduced through the obvious definition relation

kSB ≡ Dg

D∗
g

. (36)

This new correction factor named correction factor for
the radiative heat loss from the bodies’ surfaces is de-
fined as the ratio of the absorbed dose in the graphite
core considering the effect of the radiative heat loss cor-
rection from the bodies’ surfaces, to the value without
considering this effect. Using (20), (22), (34), (35) and
(36) relations, this new correction factor can be theoret-
ically expressed as follows:

kt
SB =

1 +
(
F c

C+J

)∗
1 + (F r

C)∗
1 + (F r

C)∗ + (F r
C)rad

1 +
(
F c

C+J

)∗ +
(
F c

C+J

)rad
=

C1 [T c
1 (tch) + T c

2 (tch)] + (Kc
2)
∗ ∫ tch

0
(T c

2 − T c
3 ) dt

C1T r
1(trh) + (Kr

1)
∗ ∫ trh

0
(T r

1 − T r
2) dt

×
C1T

r
1(trh) + (Kr

1)
∗ ∫ trh

0
(T r

1 − T r
2) dt + e1

∫ trh
0

[
(TM + T r

1)4 − (TM + T r
2)4

]
dt

C1 [T c
1 (tch) + T c

2 (tch)] + (Kc
2)
∗ ∫ tch

0
(T c

2 − T c
3 ) dt + e2

∫ tch
0

[
(TM + T c

2 )4 − (TM + T c
3 )4

]
dt

, (37)

where

(Kr
1)
∗ def.=

P1

T r
1(∞)− T r

2(∞)

−
e1

{
[TM + T r

1(∞)]4 − [TM + T r
2(∞)]4

}

T r
1(∞)− T r

2(∞)
= Kr

1 − (Kr
1)

rad < Kr
1 ,

(Kc
2)
∗ ≡ K∗

2 , Kr
1 ≡

P1

T r
1(∞)− T r

2(∞)

=
P1

T1(∞)− T2(∞)
= K1 , tch = 100 s ,

trh = 240 s , T c
i ,

(
i = 1, 3

)

are the solutions of the equation system (25) with P1 6= 0
and P2 = P3 = 0, T r

i , (i = 1, 3) are the solutions of the
same equation system but with P1/C1 = P2/C2 = P3/C3

and



T r
1(∞) = P1/K1 + T r

2(∞),
T r

2(∞) = (1 + K3/K2)T r
3(∞)− (P1/K2) (C3/C1) ,

T r
3(∞) = (P1/K3) (2 + C3/C1) .

(38)

Making all necessary substitutions in (37) and inte-
grating for the new correction factor kSB it results in a
theoretical value of

kt
SB = 0.999623 ≈ 0.9996 . (39)

If kSB is determined directly from the amount of ra-
diative heat lost from the core surface during the heating
period (tch = 100 s) of an electrical calibration run, by
taking into consideration the view-emissivity factor [18],
then it results that

kSB =
9800 µJ− 3.447 µJ

9800 µJ
= 0.999648 ≈ 0.9996 ,

i.e., kSB has approximately the same value as kt
SB (the

difference between the two values is very small, being of

0.0025%). The value of kSB is less important than the
correction for vacuum gaps, correction for density differ-
ence between the phantom and calorimeter, correction
for depth measurement, correction for the calorimeter
front slab and correction for impurities, it is more im-
portant than each of the following corrections: correc-
tion for air attenuation, correction for the front kapton
foil, correction for difference of thermal transfer between
electrical calibration and irradiation and correction for
the poly (methyl methacrylate) (PMMA) back and ra-
dial thickness, and it has the same order of magnitude as
the correction for absorbed dose gradient in the core and
correction for source–reference point distance [19].

It is important to notice that, if kSB is calculated us-
ing this alternative, the amount of radiative heat loss
from the core surface during a radiation run can be ne-
glected because it is very small: (W r

C)rad|t∈[0, 240]s =
1.58× 10−7 J. The very small difference between the two
values obtained for the new introduced correction factor
(the theoretically calculated value, kt

SB = 0.999623, and
the value determined directly from the amount of radia-
tive heat loss, kSB = 0.999648) is due to the non-zero
effect of RHLC on the factors (F r

C)∗ and (F c
C+J)

∗ in rela-
tion (35) through the temperatures T1(t), T2(t) and T3(t)
— on the one hand, and through the new heat transfer
coefficients K∗

1 and K∗
2 — on the other hand (see the rela-

tions (20) and (22)). In conclusion, if the model based on
differential equation system (25) is adopted for describing
a 3-body Domen-type graphite calorimeter, then the ab-
sorbed dose to graphite must be corrected by the factor
kSB ≈ 0.9996 (or, in percent, 0.04%).

4. Conclusions

Taking into account the radiative heat loss correction,
a new refined ordinary differential equation model for
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describing the global behaviour of a three-body Domen-
-type graphite calorimeter was proposed and analyzed.
This model is more precise than the old one and, thus,
can lead to results closer to reality (i.e., to experimen-
tal measurements). Besides, in the case of long-enough
period of core heating (tens of minutes), it was revealed
that the jacket plays the role of a sui-generis buffer for
the radiated heat, and thus, the usefulness of the third
calorimeter body (the shield) was theoretically settled
when building a graphite calorimeter, which, for the first
time was introduced by Domen [5].

The new “reduced” heat transfer coefficients that were
defined in this improved model, K∗

i = Ki − Krad
i , (i =

1, 2, 3), allowed to define new (calculated) heat loss cor-
rection factors, F ∗C < FC and F ∗C+J < FC+J, which are
smaller than the old ones for both the radiation and cal-
ibration runs; consequently, the heat loss correction un-
certainty decreases.

The model permits the calculation of the radiated heat
from the calorimeter bodies’ surfaces for both heating
and post heating periods, which could be used in deter-
mining the corresponding new correction factor for the
absorbed dose to graphite. This new correction factor
named correction factor for the radiative heat loss from
the bodies’ surfaces was defined as the ratio of the ab-
sorbed dose in the core graphite considering the effect of
the radiative heat loss correction from the bodies’ sur-
faces, to the value without considering this effect. Two
quasi-equal values (determined by two different means)
were calculated for this new correction factor: a pure the-
oretical one, kt

SB = 0.999623 ≈ 0.9996, and one inferred
from the effective amount of heat lost through radiation
from the core surface, kSB = 0.999648 ≈ 0.9996.

The amount of heat lost through radiation was cal-
culated only for the core surface for both heating and
post heating periods and it was found that in both cases
it represents 31.35% from the corresponding total core
heat losses.
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