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The possibility has been investigated of determining, using graydar (Gamma RAY Detection And Ranging)
approach, the in-depth partial-density profile of some substance absorbed in a dense medium. Analytical
algorithms have been derived for retrieving the in-depth profile of the partial density of the absorbed substance
on the basis of the conjecturally known in-depth profile of the extinction of the absorbing medium and the
experimentally determinable graydar profile. The retrieval error under the Poisson noise conditions has also been
estimated analytically. The simulations performed of the Poisson-noise effect concern the case of soil moisture.
The results obtained confirm the validity of the derived retrieval algorithms and error estimates and show that
the soil moisture profile may be accurately determined to depths of 50 cm, depending on the dry-soil bulk density,
the sensing photon flux, and the measurement time.
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1. Introduction

There are various single-sided and high-resolution
gamma or X-ray techniques developed [1–9] for non-
-destructive evaluation of material substances that are
not transparent for optical or microwave radiation. These
methods are intended for determination of the electron-
-density distribution within the investigated objects.
They are usually based on the dependence of the energy
of the Compton single-scattered photons on the angle of
scattering.

A common difficulty of them is the lack of any clear
approach for taking into account the linear attenua-
tion (extinction) within the object. Moreover, some of
the methods [3, 4, 6–9] require too complicated image-
-reconstruction algorithms like those in computer-aided
tomography [10–12]. Other ones [1, 2, 5] require rela-
tively long data-collection time.

The graydar (Gamma RAY Detection And Ranging)
approach [13–16] is free of the above-mentioned diffi-
culties. Instead, it allows to determine simultaneously,
in a relatively simple unambiguous one-sided way and
with controllable accuracy and resolution, the profiles of
the extinction and Compton-backscattering coefficients
within an object of interest. This in turn would al-
low one to determine the internal distribution of differ-
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ent constituent substances and their mass density. The
capabilities of the graydar sensing have been studied
and demonstrated in [13, 14], where three typical cases
have been considered. In the first case, the graydar line
of sight (LOS, sensing beam axis) penetrates homoge-
neous regions of different substances. In the second case,
the probed object consists of only one material having
nonuniform spatial density distribution. In the third
case, the LOS penetrates homogeneous one-material
ingredients surrounded by one-material medium with
nonuniform density distribution. The procedure of lat-
erally scanning the LOS and obtaining two-dimensional
(2D) images (sections) of the probed objects has also
been simulated. It is shown, for instance, that, at a num-
ber of 109 sensing photons deposited along one LOS, one
may establish with 2–3 mm longitudinal and transversal
resolution the presence, the disposition, the shape, and
the kind of different homogeneous ingredients, cavities
and flaws within a homogeneous surrounding material
(aluminum); the presence of more than one flaw along
one LOS is shown to not lead to noticeable masking ef-
fect [15]. It is shown as well that the graydar approach is
capable of finding, identifying, and imaging homogeneous
ingredients (plastic TNT landmines) in homogeneous or
inhomogeneous soil, at depths to 20 cm, density-contrast
from 5%–8% to 20%, and longitudinal (along the LOS)
and transversal resolution of 1–2 mm and 8–10 mm, re-
spectively [14, 16].

(540)
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The main purpose of the present work is to consider
a somewhat different problem of graydar sensing com-
pared to those mentioned above. This problem concerns
in general the case when some known substance has been
diffused into a dense medium with known gamma-ray
extinction distribution. The task to be solved is to de-
termine the LOS partial density profile of the diffused
substance. An applied problem of this type is the deter-
mination of moisture distribution in soil. In the further
analysis we shall investigate analytically the possibility
of solving in principle the above-formulated general task.
The results obtained will be in a sense tested and illus-
trated by simulating the Poisson noise influence on the
measurement accuracy in the important for applications,
concrete case concerning the soil moisture.

2. Graydar principle and graydar equation

Like the lidar (LIght Detection And Ranging) princi-
ple, the graydar principle consists in general in time-to-
-range resolved detection of the backscattering-due radia-
tive return from a probed object irradiated by narrow-
-beam, pulsed gamma radiation. Considering an inelas-
tic scattering process, the incident-photon energy may
be denoted by Ef , and the return-photon energy, by Eb.
During the detection procedure the radiative return is
transformed into a return electrical signal F (t) measured
as a function of the time delay t after the instant of emis-
sion of the corresponding sensing pulse. Under single-
-scattering conditions there exists one-to-one correspon-
dence t ≡ 2z/c (z ≡ ct/2) between the time t and the
LOS distance z to the sensing-pulse front that is the front
of the scattering volume contributing to the signal at this
time; c is the speed of light. Also, if ∆t is the sampling
interval in the time domain, ∆z = c∆t/2 will be the sam-
pling interval in the range domain. Thus, in practice,
a time-to-range resolved return signal or graydar profile
F = F (t,∆t) = F (z, ∆z) can be obtained. The main in-
strument for quantitative analysis concerning graydar is
the so-called single-backscattering graydar equation [13]
that describes the relation between the graydar profile
F (t,∆t), the parameters of the radiation-transceiving
system (incident-photon rate, receiving detector area, re-
ceiving efficiency, sampling interval in the time or range
domain, etc.), the energy Ef of the sensing gamma pho-
tons, and the LOS distribution of the physical character-
istics (extinction and backscattering coefficients) of the
medium under investigation. It is valid when only once
backscattered and many times forward scattered pho-
tons are detected, and the pulse length lp = cτp (τp is
the pulse duration) and ∆z are smaller than the least
variation scale of the material characteristics inside the
probed object. In this case the timing uncertainty ∆tu
due to inertness and noise in the transceiving electronics
should be much less than the larger of τp and ∆t. The
achievable minimum range-resolution cell is then equal
to max(lp, ∆z).

When the scattering mechanism of concern is the
Compton effect, two mutually complementary ways may

be used of selecting the single-backscattering photons
alone. The first way consists in ensuring as narrow as
possible field of view of the radiation-receiving system.
At the same time, the field of view should cover the
sensing photon beam in order to avoid the loss of sig-
nal photons. Thus, the transversal beam size determines
the minimum transversal-resolution cell. The second way
consists in energy selection based on the dependence of
the energy of the Compton-scattered photons on the scat-
tering angle. So, according to the Compton formula [17],
for Ef = 511 keV the signal (once only backscattered)
photons will have Compton energy Ebc ≈ 170 keV.
The energy selection of the signal photons requires the
use of photon detectors of determinate, sufficiently high
energy resolution consistent with the Doppler broaden-
ing [18, 19], with half-width ∆ED, of the signal-photon
energy around Ebc. It would be effective when sens-
ing “light to medium-weight” materials causing relatively
small Doppler broadening. In the case of “heavy” materi-
als the broadening effect will be larger and the question
about the disturbance of the energy selection requires a
separate profound investigation.

Fig. 1. Principle block-scheme of experimental ar-
rangement for gamma-ray lidar-type in-depth sensing
of optically opaque media.

A regime of δ-pulse sensing could be achieved [13] by
using a monostatic sensing system (see Fig. 1) emit-
ting spontaneously a narrow beam of incident on the
probed object gamma photons of energy Ef and detect-
ing the Compton backward-scattered photons of energy
Ebc. The mean incident photon rate and the total mea-
surement time may be denoted in this case by q0 and T ,
respectively. Further, one may consider each incident
photon as a δ-like sensing pulse and specify the corre-
sponding eventually registered signal photon by its en-
ergy Eb = Ebc and arrival time t with respect to the
instant of emission of the sensing photon. To mark the
instants of emission of the incident photons one may
use [13, 20, 21] sensing photon beams resulting from
electron–positron annihilation within a converter irradi-
ated by positrons from a radioactive source (Fig. 1). As
a result of annihilation, two gamma photons of energy
Ef = 511 keV are simultaneously emitted in opposite di-
rections. A part of the annihilation photons, through a
collimator, is formed as a sensing beam and directed to
the probed object. The backpropagating photon of each
“sensing” pair through the collimator reaches a scintilla-
tor and generates a start light pulse. The corresponding
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once only Compton backscattered signal photon of en-
ergy Eb ≈ Ebc = Ef/3 reaches another scintillator and
produces a stop light pulse. Both the light pulses pro-
duce in turn, through a photomultiplier, a couple of two
time-shifted start and stop electronic pulses. These out-
put pulses are further amplified and processed to iden-
tify simultaneously both the energy and the arrival time
of each detected photon. During the measurement pe-
riod T , the number of the sensing photons deposited into
the probed object along one line of sight will be q0T . At
the same time, a realization N̂T (Ebc, t,∆t) will be ob-
tained of the energy-selected time-to-range resolved gray-
dar profile NT (Ebc, t, ∆t) describing the mean number of
accumulated signal gamma-photon counts per one reso-
lution cell ∆t, with arrival times between t and t+∆t cor-
responding to acts of backscattering between the points
z and z + ∆z along the LOS. The graydar profile is de-
scribed by the equation [13]:

NT (Ebc, t,∆t) ≡ NT (Ebc, z, ∆z)

= dq0∆zTz−2η(z)β(z) exp
(
−

∫ z

z0

dz′α(z′)
)

, (1)

where d = π(r2
d − r2

c ) is the receiving detector area, rd

and rc (¿ rd) are, respectively, the radii of the circular
scintillating detector’s layer and collimator’s aperture, z0

is the longitudinal coordinate of the “entrance” into the
investigated object (see Fig. 1), η(z) is the receiving effi-
ciency of the experimental setup that is usually equal to
unity [13], β(z) [m−1/sr] is the LOS profile of the volume
backscattering coefficient, and α(z) = αf(z) + αb(z) is
the profile of the two-way extinction index, αf(z) [m−1]
and αb(z) [m−1] are the extinction coefficients for the in-
cident and signal photons, respectively. Equation (1) is
the δ-pulse single-backscattering graydar equation.

For a one-material medium the variability of the pro-
files β(z) and α(z) with z is entirely defined, as a fac-
tor, by the corresponding (partial or bulk or natural-
-state) mass-density profile ρ(z); besides, both the pro-
files are related through an independent of z, constant
graydar ratio b = β(z)/α(z) [13]. For evaluating the co-
efficients β and α of a great variety of monoatomic and
polyatomic materials, the rich contemporary information
may be used, given, e.g. in [22] and [23], about their nat-
ural density ρ, mass attenuation µ = α/ρ, and effective
atomic number-to-mass ratio 〈Z/A〉.

3. Determining the in-depth partial-density
profile of a substance penetrating

into a dense medium

Consider the procedure of in-depth sensing of a dense
two-component object consisting for instance of a “dry”
porous component, e.g., dry soil, that has absorbed an-
other, “liquid” component, e.g., water. The in-depth pro-
files of the volume backscattering coefficient βds(z) and
the two-way extinction coefficient αds(z) of the dry com-
ponent will be supposed known. They can be preliminar-
ily measured, also by graydar [13, 14], before absorbing

the moist component. The problem to be solved consists
in determining the partial-density profile ρw(z) of the
liquid component on the basis of the measured graydar
profile NT (Ebc, t,∆t), the known experimental parame-
ters d, q0, ∆z, T , and η(z), and the known dry compo-
nent characteristics βds(z) and αds(z). For this purpose,
Eq. (1) may be written in the form

S(z) = [βds(z) + βw(z)]

× exp
(
−

∫ z

z0

[αds(z′) + αw(z′)] dz′
)

, (2)

where S(z) = NT (Ebc, z, ∆z)/[dq0∆zTz−2η(z)] is the
so-called S-function, βds(z) + βw(z) = β(z), αds(z) +
αw(z) = α(z), and βw(z) and αw(z) are the in-depth
profiles of the volume backscattering coefficient and the
two-way extinction coefficient of the liquid component.

Taking into account that βw(z) = bwαw(z) and
αw(z) = ρw(z)µw, it follows that the problem of deter-
mining the profile ρw(z) consists in fact in solving Eq. (2)
with respect to αw(z); bw and µw = µwf + µwb are the
graydar ratio and the mass attenuation index of the liq-
uid component. The quantities µwf and µwb are the cor-
responding mass attenuation coefficients for the sensing
photons and the backscattered photons. Note as well
that, since the natural free-state water density is equal
to 1 g/cm3, in a bulk material the watery-component
partial density determined in g/cm3 is numerically equal
to the dimensionless volumetric watery content.

By using the substitutions βw(z) = bwαw(z), F (z) =
exp(− ∫ z

z0
αw(z′)dz′) and G(z) = exp(− ∫ z

z0
αds(z′)dz′),

Eq. (2) is reducible to the following first-order linear dif-
ferential equation:

d
dz

F (z)− [βds(z)/bw] F (z) + S(z)/ [bwG(z)] = 0 . (3)

The solution of Eq. (3) with respect to F (z) is rou-
tinely obtainable under the natural boundary condition
F (z = z0) = 1 and is valid for z ∈ [0,∞). Another ex-
pression of F (z), for z ∈ [0, zm], may also be obtained
under the boundary condition F (z = zm) = Fm. Then,
in both the cases, the linear attenuation profile αw(z) is
obviously expressible as

αw(z) = − d
dz

ln F (z) . (4)

The corresponding expressions obtained for αw(z) are:
αw(z) = −βds(z)/bw

+
S(z) exp

(∫ z

z0
[αds(z′)− βds(z′)/bw] dz′

)

bw − J1(z)
, (5)

and
αw(z) = −βds(z)/bw

+
S(z)H(z0,zm) exp

(−∫ zm

z
[αds(z′)−βds(z′)/bw]dz′

)

Fmbw + H(z0, zm)J2(z)
,

(6)
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where

J1(z) =
∫ z

z0

dz′S(z′)

× exp

(∫ z′

z0

[αds(z′′)− βds(z′′)/bw] dz′′
)

, (7a)

J2(z) =
∫ zm

z

dz′S(z′)

× exp
(
−

∫ zm

z′
[αds(z′′)− βds(z′′)/bw] dz′′

)
, (7b)

and

H(z0, zm) = exp
(∫ zm

z0

αds(z′)dz′
)

. (7c)

Equations (5) and (6) represent in fact the backscat-
tering coefficient of the absorbed substance, βw(z) =
bwαw(z), as the difference between the overall two-
-component backscattering coefficient and that of the
absorbing medium, βds(z). When the absorbing dry
medium consists of only one material, the value of
bds(z) ≡ bds = const so that βds(z) = bdsαds(z). Also,
when the penetrating substance and absorbing medium
consist of relatively light materials, such as, e.g., water,
soil, aluminium, etc., bw and bds will have practically the
same value of 0.02 [13]. Then βds(z)/bw = αds(z) and the
exponential factors in Eqs. (5), (6), (7a) and (7b) will be
equal to unity.

The expressions of αw(z) given by Eqs. (5) and (6) are
valid in general for both continuous and discontinuous
dense media. The latter case concerns, e.g., the presence
of air cavities or other inclusions in the way of the sensing
photon beam. In this case, one should only exclude from
consideration the discontinuity points of βds(z) (αds(z))
that are recognizable in the experimental profiles of S(z)
(NT (Ebc, z, ∆z), see in [14–16]).

The relative rms error δrα = 〈[α̂w(z) −
αw(z)]2〉1/2/αw(z) = 〈[ρ̂w(z) − ρw(z)]2〉/ρw(z) and the
relative bias error Brα(z) = [〈α̂w(z)〉 − αw(z)]/αw(z) =
[〈ρ̂w(z)〉−ρw(z)]/ρw(z) in the determination of αw(z) are
estimated (see Appendix) by linear error propagation.
The symbols ̂ and 〈.〉 denote statistical estimate and
ensemble average, respectively; ρ̂w(z) = α̂w(z)/µw. The
results obtained are

δrα1(z) ≥ [1+βds(z)/βw]
{

N−1
T (Ebc, z, ∆z) + N−1

TJ (z)

×
[
exp

(∫ z

z0

dz′ [αw(z′) + βds(z′)/bw]
)
− 1

]2 }1/2

(8)
and

Brα1(z) ≥ [1 + βds(z)/βw]N−1/2
TJ (z)

×
[
exp

(∫ z

z0

dz′ [αw(z′) + βds(z′)/bw]
)
− 1

]
, (9)

for the expression of αw(z) given by Eq. (5), and

δrα2(z) ≥ [1 + βds(z)/βw]
{

N−1
T (Ebc, z, ∆z)

+N−1
TJ (z, zm)

×
[
1− exp

(
−

∫ zm

z

[αw(z′)

+ βds(z′)/bw]dz′
)]2}1/2

, (10)

and
Brα2(z) ≥ [1 + βds(z)/βw]N−1/2

TJ (z, zm)

×
[
1− exp

(
−

∫ zm

z

dz′ [αw(z′) + βds(z′)/bw]
)]

,

(11)
for the expression of αw(z) given by Eq. (6);
NTJ(z) =

∑(z−z0)/∆z
i=0 NT (Ebc, zi, ∆z), and

NTJ(z, zm) =
∑(zm−z0)/∆z

i=(z−z0)/∆z NT (Ebc, zi,∆z).
The analysis of Eqs. (8) and (9) shows that the relative

rms error δrα1(z) in the determination of αw, involving
the statistical and systematic errors, increases exponen-
tially with z and may have unacceptable value, even at
large values of NT (Ebc, z, ∆z) and NTJ(z).

At the same time, according to Eqs. (10) and (11), the
relative rms error δrα2(z) is mainly due to the statisti-
cal Poisson fluctuations. In this case, the statistical bias
(Eq. (11)) is negligibly small at small values of z where
NTJ À 1. The increase of the bias with z is relatively
slow because in Eq. (11) the corresponding decrease of
NTJ(z, zm) is compensated for by the decrease of the nu-
merator 1− exp(− ∫ zm

z
dz′[αw(z′) + βds(z′)/bw]). Equa-

tions (8)–(11) show as well that in both the cases the
error in the determination of the partial density profile
of the absorbed substance is proportional to the pene-
trated amount of it and to the bulk density of the ab-
sorbing medium (through αw(z), and βds(z) and αds(z),
respectively); also, the error is inversely proportional to
the sensing photon flux and the data acquisition time
through NT and NTJ .

One more source of error in the determination of αw

on the basis of Eq. (6) is the uncertainty ∆Fm in the de-
termination of the boundary value Fm. According to the
expression of Eq. (6), the influence of ∆Fm on the mea-
surement accuracy is more essential at large values of z
(near zm) and decreases with the decrease of z. Approx-
imate values of Fm are obtainable by reducing Eq. (3),
taking into account the expression of F (z) and the fact
that βds(z) = bdsαds(z) and bds ≈ bw, to the relation

F (z) ≈ S(z) [bwG(z)]−1 [αw(z) + αds(z)]−1
. (12)

When αw(z) ¿ αds(z), e.g., at relatively low moisture in
soil, the relation (12) leads to the following approximate
boundary condition:

Fm = F (z = zm) ≈ S(zm) [bwαds(zm)G(zm)]−1
. (13)

In the opposite case, when αw(z) À αds(z) (high-
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-porosity soil with high water content), the neglect of
the term [βds(z)/bw]F (z) in Eq. (3) leads to another ap-
proximate boundary condition

Fm ≈ 1−
∫ zm

z0

dz′S(z′)[bwG(z′)]−1. (14)

At last, in the “moderate case”, when αw(z) ∼ αds(z),
from (12) it approximately follows that:

Fm ≈ S(zm) [2bwαds(zm)G(zm)]−1
. (15)

The applicability of the approximate conditions (13)–(15)
is numerically estimated and confirmed in the following
Sect. 4.

4. Simulations
The photon count fluctuations are simulated under the

assumption that they have Poisson statistics. Then the
only parameter of importance is given by the graydar
profile NT (Ebc, z, ∆z). At given models of the LOS pro-
files α(z) and β(z) of the extinction and backscattering
coefficients, the graydar profile is calculated according to
Eq. (1). Then its realizations are obtained by using a
Poisson random-number generator.

Four types of soil, say A, B, C, and D, are con-
sidered as probed media (see Table). Their elemental
compositions are described in Refs. [24–27], respectively.
By using data from [22, 23], the corresponding values
of 〈Z/A〉 and the two-way mass attenuation coefficients
µ = µf + µb are calculated, where µf and µb are the
forward and backward components for photon energies
Ef = 511 keV and Ebc = 170.33 keV. Expectedly, the
values obtained of µ and 〈Z/A〉 are practically coinci-
dent (Table). So, for estimations concerning all types of
soil, independently of their elemental composition, the
average values of µ = 0.224 cm2/g and 〈Z/A〉 = 0.508
can be used. The graydar ratios are also coincident:
βds = βw = 0.02 for all the soils.

The simulated experimental parameters are chosen to
be: z0 = 10 cm, ∆z = 1 cm, rd = 2.5 cm, rc = 0.1 cm,
Ef = 511 keV, Ebc = 170.33 keV, and η(z) ≡ 1; q0

and T may be varied. It is also assumed that the an-
gular divergence of the incident photon beam is αd =
rc/h = 0.01745 rad, i.e. 1◦; −h = −5.73 cm is the LOS
position of the source of gamma photons. Then, if the
positron-emission activity of the radionuclide employed
is a = 300 mCi, the mean sensing photon flux will be
q0 = 3.7 × 107aα2

d/2 ≈ 1.68 × 106 s−1. The correspond-
ing transversal resolution radius rt ∼ αd(z + h) [cm]
will vary from rt ≈ 0.27 cm, at z = z0, to rt ≈ 1 cm,
at z = 50 cm. The angle of acceptance αa ∼ rd/z
comprised by the graydar receiving aperture will vary
from αa ≈ 0.25 rad, at z = z0, to αa ≈ 0.042 rad, at
z = 50 cm. At these values of αa the energy of the de-
tected once-only-backscattered (signal) photons, within
the solid angle ΩS = πα2

a, will vary with the angle of
incidence with maximum about 1%. Also, the largest
difference = z(cos−1 αa − 1) between the return path of
a registered signal photon and the outbound path of the
corresponding sensing photon will have a maximum value
of ≈ 3 mm at z = z0. This would lead to an error in the

TABLE
Elemental compositions of the four considered types
of soil [24–27] and corresponding calculated values of
the two-way mass attenuation coefficient µ = µf + µb

and the mean ratio 〈Z/A〉.

Soil A Soil B Soil C Soil D

Element Fraction by weight [%]
H 2.8 2.2 2.1 0.2100
Li 0.0013
B 0.0013
C 14.4 1.6 0.1950
N 0.0032
O 49.7 57.5 57.7 53.0200
F 0.0046
Na 0.8 0.2450
Mg 0.0881
Al 8.9 8.5 5 1.0960
Si 21.3 26.2 27.1 43.7600
P 0.0128
Cl 0.0108
K 0.6 1.3 0.2250
Ca 0.5 4.1 0.1180
Sc 0.0005
Ti 0.1228
V 0.0035
Cr 0.0029
Mn 0.0151
Fe 1 5.6 1.1 0.7240
Co 0.0007
Ni 0.0009
Cu 0.0012
Rb 0.0058
Y 0.0035
Zr 0.0545
Ba 0.0540
Nd 0.0063
Sm 0.0012
Hf 0.0029
Pb 0.0050
Bi 0.0051
Th 0.0037

µ = µf + µb, [cm2/g] 0.2246 0.225 0.2242 0.2207
〈Z/A〉 0.511 0.507 0.5084 0.5036

positioning of the acts of backscattering along the LOS
that does not exceed 1.5 mm at z = z0 and decreases
with z.

The relative Doppler broadening ∆EDr = ∆ED/Ebc

should be about 5%. It is determined in fact by the
strongly prevailing elements in soil such as 8O, 14Si,
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13Al, and 26Fe whose fractions by weight are, respec-
tively, about 50%–60%, 20%–40%, 5%–9%, and 1%–6%
(see Table). On the basis of some available experi-
mental data [19] one may deduce for instance that at
Ef = 511 keV and Ebc = 170.33 keV, ∆EDr ≈ 5% for
aluminium. For oxygen the Doppler broadening effect
should be still weaker. An upper estimate of ∆EDr of
the same order (≈ 3.2%–6.4%) is also obtainable by cal-
culating in momentum approximation the contribution
to the Doppler broadening of K-shell electrons in free
13Al, 14Si, and 26Fe atoms (e.g., [28, 29]). Thus, to avoid
the loss of signal photons one should use gamma ray de-
tectors with ±5% (±8.5 keV) wide energy-discrimination
window around the central energy of 170 keV. Such an
energy resolution of detecting 170 keV gamma photons is
achievable, e.g., by lanthanium-based scintillation detec-
tors [30], but at the expense of lower temporal resolution
and timing accuracy of the photon count pulses. The
contemporary scientifical efforts in this field are directed
just to the development of very fast, high energy resolu-
tion gamma-photon detectors [31–33].

Fig. 2. Models of in-depth profiles of the bulk density
of soil ρds(z) (solid curve, left ordinate) and the par-
tial density of water in soil ρw(z) (dashed curve, right
ordinate).

The bulk density of soil and the partial density of wa-
ter in soil are modeled, respectively, as varying along the
LOS according to the laws

ρds(z) = ρn [1 + (z/zp) exp(−z/zp)] , (16)
and

ρw(z) = Aρds(z) exp (−(z − z0)/zw), (17)
where ρn, A, zp, and zw are characteristic parameters
that may take different values. In the simulations per-
formed it is assumed that zp = 3 cm, A = 0.4, z0 = 10 cm
and zw = 20 cm; ρn was varied between 1 g/cm3 and
1.3 g/cm3. At this choice of the parameters, the ratio
C(z) = ρw(z)/ρds(z) = A exp(−(z− z0)/zw) characteriz-
ing the contrast between the water content and the dry-
-soil content varies from C = A = 0.4 at z − z0 = 0,
through C = 0.15 at z − z0 = 20 cm, to C = 0.05 at
z − z0 = 40 cm. The models of ρds(z) and ρw(z) used
in the simulations for ρn = 1.2 g/cm3 are represented in

Fig. 3. Realizations of the graydar profiles (circles)
compared with the expected ones given by solid curves
for values of q0T equal to 1.68× 108 (1), 1.68× 109 (2),
and 1.68× 1010 (3).

Fig. 2.
Simulating the procedure of recovering the profile

ρw(z) under the Poisson noise conditions shows that
as expected, due to stronger accumulated signal and
thus to higher measurement accuracy, the depth of ac-
curate sensing increases with decreasing the soil den-
sity (ρn) and increasing the sensing photon flux and
the measurement time. This is well seen in Fig. 3,
and especially in Fig. 4 where some recovered by al-
gorithms (5) and (6) in-depth distributions ρw(z) are
compared with the premised model given by solid curve.
The dashed curves are obtained by fitting the data ob-
tained by algorithm (6). The exact boundary value is
used of Fm = F (z = zm) at zm = 49 cm (Fig. 4a),
42 cm (Fig. 4b), and 58 cm (Fig. 4c). The negative
sign of some of the recovered values of ρwr(z) given in
Figs. 4a–c has no realistic sense at all, but in fact it
is realistically interpretable as due to underestimating
the two-component, moist-soil backscattering coefficient
βds(z) + βw(z) (see Eqs. (5) and (6)). Therefore the fit-
ting procedures performed are quite reasonable. The be-
haviour of the relative rms error in the determination of
ρw(z) by algorithms (5) and (6) is shown in Fig. 5. It
confirms the theoretical expectation (see the discussion
below Eq. (11)) that algorithm (6) should be more accu-
rate than algorithm (5). So, it is seen that algorithm (5)
ensures an accurate retrieval to depths of about 17 cm,
at ρn = 1 g/cm3 and q0T = 1.68× 109 (Fig. 4a), 14 cm,
at ρn = 1.3 g/cm3 and q0T = 1.68 × 109 (Fig. 4b),
and 25 cm, at ρn = 1 g/cm3 and q0T = 1.68 × 1010

(Fig. 4c). With increasing the depth above the indicated
values an unacceptable bias takes place. At the same
time, the partial density profile ρwr(z) recovered by using
algorithm (6) is unbiased and closely coincident with the
true one to depths of 26 cm, 23 cm, and 32 cm, respec-
tively. Moreover, a fit to the data obtained for ρwr(z)
practically coincides with the true profile to depths of
about 40 cm in Fig. 4a, 33 cm in Fig. 4b, and 50 cm
in Fig. 4c. The corresponding mean relative deviation
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Fig. 4. In-depth distributions ρwr(z) of the partial den-
sity of the absorbed water (compared with the true
one given by solid curve) recovered using algorithms (5)
(squares) and (6) (circles) at different values of ρn and
q0T . The dashed curves are obtained by fitting the data
recovered by algorithm (6).

drρ(0, z) = [
∫ z

z0
|ρwf(z) − ρw(z)|dz]/[

∫ z

z0
ρw(z)dz] of the

fitted profiles ρwf(z) in Figs. 4a,b and c are estimated to
be equal to 0.085 (8.5%, z − z0 = 39 cm), 0.023 (2.3%,
z − z0 = 32 cm), and 0.03 (3%, z − z0 = 48 cm).

Figure 6 illustrates the performance of algorithm (6)
in the case of using the approximate boundary condition
(13) for Fm. The value of zm is chosen to be 49 cm,
that is, the depth zm − z0 = 39 cm. As it is seen, the
result from the retrieval is near that obtained for the
true value of Fm (Fig. 4a). Thus, the use of the approx-
imate boundary condition (13) turns out to be accept-
able and expedient. The use in the simulations of the
other approximate boundary conditions, (14) and (15),
also ensures acceptable accuracy of recovering the mois-
ture profile ρw(z). This is seemingly due, according to

Fig. 5. Theoretically estimated rms relative error
(solid curves) in the determination of the partial den-
sity ρw(z) of the absorbed water, using algorithms (5)
(a) and (6) (b), compared with the absolute values
drρ(z) (circles) of the relative deviations of the recov-
ered profile ρwr(z) for ρn = 1 g/cm3; drρ(z) = |ρwr(z)−
ρw(z)|/ρw(z). The experimental conditions supposed
and the results illustrated here correspond to those con-
cerning Fig. 4a.

the character of Eq. (6), to the low sensitivity of this
algorithm to uncertainties in the determination of the
boundary value Fm.

As a whole, the results from the simulations conducted
show that the in-depth soil moisture profile can be accu-
rately measured using graydar to depths of 40–50 cm,
depending on the bulk density of soil, the sensing pho-
ton flux, and the measurement (data acquisition) time.
It turns out as well that the second of the retrieval al-
gorithms, algorithm (6), would ensure a higher sensing
accuracy compared to algorithm (5), and correspond-
ingly a larger depth of accurate sensing. The approxi-
mate boundary conditions concerning algorithm (6) are
shown to not lead to noticeable lowering of the retrieval
accuracy. Mention at last that the simulations performed
illustrate the possibility of measuring the soil moisture
profile at a contrast, with respect to the dry-soil profile,
of 0.05 at a depth of 40 cm.

5. Summary

In the present work the possibility is investigated of de-
termining using graydar the in-depth profile of the partial
density of a substance absorbed by a medium with known
bulk density distribution. On the basis of the graydar
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Fig. 6. In-depth distribution ρwr(z) of the partial den-
sity of absorbed water recovered by algorithm (6) in
the case of using an approximate value of Fm. The
model supposed of ρw(z) is given by solid curve; q0T =
1.68× 109.

equation two inverse algorithms have been derived for
recovering the in-depth partial-density profile of the ab-
sorbed substance on the basis of the known bulk-density
profile of the absorbing medium, the known parameters
of the experimental setup, and the experimentally deter-
minable graydar profile. Analytical lower estimates of
the corresponding Poisson-noise-due retrieval errors and
approximate “internal” boundary conditions underlying
the performance of the “second” of the algorithms have
also been obtained. To examine and illustrate the algo-
rithm performance, the recovering procedures have been
numerically simulated, taking into account the Poisson
fluctuations of the graydar signal. The important for ap-
plications case has been considered when the absorbed
substance is water, and the absorbing medium is soil.
The results obtained are in agreement with the theoreti-
cal results and conclusions. So, they show that the error
of sensing of the moisture profile is proportional to the
bulk density of soil, and is inversely proportional to the
sensing photon flux and the data-acquisition time. Be-
sides, the “second” algorithm (6) turns out to be more
accurate indeed than the “first” algorithm (5), thus al-
lowing one to achieve a larger depth of accurate sens-
ing. The simulations also show that the use of the ap-
proximate boundary conditions concerning algorithm (6)
does not lead to noticeable lowering of the retrieval ac-
curacy. The soil moisture profile could be accurately de-
termined to depths of 40–50 cm, at a resolution scale
of 1 cm and measurement time of, e.g., 1000 s when
q0 = 1.68 × 106 s−1. The detectable water-to-dry-soil
density contrast could be as small as 5% at a depth of
40 cm. The three-dimensional moisture distribution is
obtainable by laterally scanning the graydar LOS or by
using simultaneously a set of parallel sensing beams.

The realization of the discussed here graydar approach
would require experimental equipment ensuring fine-
-enough discrimination of the instants of emission of the
sensing photons and the arrival times and energy of the

backscattered photons. Such an equipment may be avail-
able soon as a result of the contemporary progress in the
development of fast high-energy-resolution detectors and
analyzers of gamma photons [30–32].

Acknowledgments

This research was partially supported by the Bulgarian
National Science Fund under project No. DO-02-107.

Appendix

At a given experimental realization N̂T (Ebc, z, ∆z) of
the graydar profile NT (Ebc, z, ∆z), according to Eqs. (5)
and (6), the corresponding estimate α̂w(z) of the profile
αw(z) is given by the expression

α̂w(z) = −βds(z)/bw

+
Ŝ(z) exp

(∫ z

z0
[αds(z′)− βds(z′)/bw] dz′

)

bw − Ĵ1(z)
, (18)

following from Eq. (5), or the expression
α̂w(z) = −βds(z)/bw

+
Ŝ(z)H(z0,zm) exp

(−∫ zm

z
[αds(z′)−βds(z′)/bw]dz′

)

Fmbw + H(z0, zm)Ĵ2(z)
,

(19)
following from Eq. (6), where

Ŝ(z) = N̂T (Ebc, z, ∆z)/W (z) , (20a)

W (z) = dq0∆zTz−2η(z) , (20b)

Ĵ1(z) =
∫ z

z0

dz′Ŝ(z′)

× exp
( ∫ z′

z0

[αds(z′′)− βds(z′′)/bw] dz′′
)

, (20c)

Ĵ2(z) =
∫ zm

z

dz′Ŝ(z′)

× exp
(
−

∫ zm

z′
[αds(z′′)− βds(z′′)/bw] dz′′

)
. (20d)

For estimating the relative rms error δrα = 〈[α̂w(z) −
αw(z)]2〉1/2/αw(z) in the determination of αw(z), the es-
timate α̂w may be considered as a function of two ran-
dom variables: Ŝ(z) and Ĵ1(z) [or Ĵ2(z)] when given by
Eq. (18) [or by Eq. (19)]. The random variables obviously
obey the relations 〈Ŝ(z)〉 = S(z), and 〈Ĵ1,2(z)〉 = J1,2(z).
By linear error transfer based on Eqs. (18) and (19) the
following general expressions of δrα(z) are obtained, re-
spectively:

δrα1(z) =
{[

∂ ln αw(z)
∂S(z)

]2

VarŜ(z)

+
[
∂ ln αw(z)

∂J1(z)

]2

VarĴ1(z)
}1/2

= (1 + βds/βw)



548 L.L. Gurdev et al.

×
{

[S(z)]−2VarŜ(z) + [bw − J1(z)]−2VarĴ1(z)
}1/2

,

(21)
and

δrα2(z) =
{[

∂ ln αw(z)
∂S(z)

]2

VarŜ(z)

+
[
∂ ln αw(z)

∂J2(z)

]2

VarĴ2(z)
}1/2

= {(1 + βds/βw)[S(z)]−2VarŜ(z)

+ [H(z0, zm)]2[Fmbw + H(z0, zm)J2(z)]−2

×VarĴ2(z)}1/2, (22)
where VarY (z) = 〈[Y (z)− 〈Y (z)〉]2〉.

Let us further concretely perform a more detailed
estimation of δrα1(z). So, on the basis of Eq. (1) it
follows that:

[S(z)]−2VarŜ(z) = N−1
T (Ebc, z, ∆z) . (23)

Also, by using Eqs. (2) and (7a), the relation

bw − J1(z) = bw exp
(
−

∫ z

z0

dz′ [αw(z′) + βds(z′)/bw]
)

(24)
is derived. On the basis of Eq. (7a), the following
expression for VarĴ1(z) can be written:

VarĴ1(z)

=
∫ ∫ z

z0

dz′dz′′Var1/2Ŝ(z′)Var1/2Ŝ(z′′)K(z′, z′′)

× exp
( ∫ z′

z0

dξ [αds(ξ)− βds(ξ)/bw]

+
∫ z′′

z0

dξ [αds(ξ)− βds(ξ)/bw]
)

, (25)

where K(z′, z′′) = CovS(z′, z′′)/[VarŜ(z′)VarŜ(z′′)]1/2

is the correlation coefficient of Ŝ(z), and CovS(z′, z′′) =
〈[Ŝ(z′) − S(z′)][Ŝ(z′′) − S(z′′)]〉 is the covariance of
Ŝ(z). After the change of variables ζ = (z′ + z′′)/2 and
η = z′ − z′′, Eq. (25) acquires the form

VarĴ1(z) =
∫ z−z0

−(z−z0)

dη

∫ z−|η/2|

z0+|η/2|
dζ

×
[
VarŜ(ζ + η/2)VarŜ(ζ − η/2)

]1/2

×K (ζ + η/2, ζ − η/2)

× exp
( ∫ ζ+η/2

z0

[αds(ξ)− βds(ξ)/bw] dξ

+
∫ ζ−η/2

z0

[αds(ξ)− βds(ξ)/bw] dξ

)
. (26)

Further, Ŝ(z) is assumed to be a quasiho-
mogeneous random function of z, such that
[VarŜ(z′)VarŜ(z′′)]1/2K(z′, z′′) ≈ VarŜ[(z′ +
z′′)/2]K(z′ − z′′) = VarŜ(ζ)K(η) (e.g. [34]), whose
correlation radius ρc [for |η| > ρcK(η) is practically
equal to zero] is much smaller than z − z0 and the
variation scale of VarŜ(ζ). Under this assumption
Eq. (26) can be written in the form

VarĴ1(z) =
∫ z−z0

−(z−z0)

dηK(η)
∫ z

z0

dζVarŜ(ζ)

× exp

(
2

∫ ζ

z0

[αds(ξ)− βds(ξ)/bw] dξ

)

= ρc

∫ z

z0

dζ
NT (Ebc, ζ, ∆z)

W 2(ζ)

× exp

(
2

∫ ζ

z0

[αds(ξ)− βds(ξ)/bw] dξ

)

≈ ∆z

∫ z

z0

dζ
NT (Ebc, ζ, ∆z)

W 2(ζ)

× exp

(
2

∫ ζ

z0

[αds(ξ)− βds(ξ)/bw] dξ

)
, (27)

where ρc =
∫ z−z0

−(z−z0)
dηK(η) ≈ ∫∞

−∞ dηK(η) is an
expression of the correlation radius ρc that is of the
order of ∆z, and VarŜ(ζ) = NT (Ebc, ζ, ∆z)/[W 2(ζ)]
according to Eq. (20a). Next, the following expression
of ∆z may be written:

∆z =
∆zNTJ (z)

NTJ(z)
= N−1

TJ (z)
∫ z

z0

NT (Ebc, z
′, ∆z)dz′,

(28)
where NTJ (z) =

∑(z−z0)/∆z
i=0 NT (Ebc, zi,∆z) and

the fact is used that practically ∆zNTJ (z) =∫ z

z0
NT (Ebc, z

′, ∆z)dz′. Taking into account in Eq. (27)
the expression of Eq. (28), the inequality of Hölder for
integrals [35], and Eq. (2), it follows that

VarĴ1(z) ≈ N−1
TJ (z)

∫ z

z0

dξNT (Ebc, ξ, ∆z)

×
∫ z

z0

dζNT (Ebc, ζ, ∆z)/
[
W 2(ζ)

]

× exp

(
2

∫ ζ

z0

[αds(ξ)− βds(ξ)/bw] dξ

)

≥ N−1
TJ (z)

[ ∫ z

z0

dζS(ζ) exp
( ∫ ζ

z0

dξ[αds(ξ)

−βds(ξ)/bw]
)]2
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= N−1
TJ (z)b2

w

[
1− exp

(
−

∫ z

z0

dξ[αw(ξ)

+βds(ξ)/bw]
)]2

. (29)

After replacing in Eq. (21) the estimates and expressions
(23), (24), and (29) of S−2(z)VarŜ(z), bw − J1(z), and
VarĴ1(z), the relation (8) is obtained.

The estimate (9) of the corresponding relative bias er-
ror Brα1(z) is obtained in a similar way. In a quite anal-
ogous way as above the estimates (10) and (11) are ob-
tained of δrα2(z) and the corresponding relative bias error
Brα2(z).
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