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The linear travel-time interpolation algorithm is improved by the method of ray tracing based on finite
difference scheme of eikonal equation. It can simulate the more complex medium. Using the algorithm to calculate
travel-time and paths of tracing rays, it is more rapid and accurate than the other conventional methods. The
linear travel-time interpolation ray tracing algorithm has a drawback: rays cannot go round the low velocity area
if the launching point, the receiving point and the low velocity area distribute on the same column (row). Aiming
at the drawback, an improved algorithm is proposed on the basis of researching reconstruction theories. The
given algorithm adopts a cross-scanning strategy to carry out forward processing and uses discrete points as the
secondary sources to simplify backward processing. The numerical simulation experiments show that the rays can
go round the low velocity areas located in the same column (row) of the launching points and the receiving points.
Rays scan over the global region only once.

PACS numbers: 07.05.Pj, 42.30.Wb. 43.60.+d

1. Introduction

In ultrasound computed tomography, sonic velocity of
points on a tomography surface is not equal. Ultrasound
traveling paths are curves reflecting the non-uniformity
of materials. Based on these similarities with earthquake
wave people began to apply ray tracing methods in earth-
quake tomography to ultrasound tomography [1–3].

In recent years, ray tracing global methods which con-
sider travel-time and paths of all discrete points have
aroused widespread interest. The rationale of methods
still is eikonal equation, Fermat principle and Huygens
principle. They can calculate the travel-time accurately
in complex models [4–7].

The conventional ray tracing methods generally in-
clude shooting methods of initial value problems and
bending methods of boundary value problems. However,
many problems exist in these methods. For example, it is
difficult to deal with great velocity variation in medium
and to work out the global minimum travel-time in multi-
-valued travel-time. It also has low computational effi-
ciency. Even the density of rays covered in shadow areas
is insufficient [8–10].

Asakawa (1993) proposed a new ray tracing algorithm
based on the linear travel-time interpolation (LTI). The

∗ e-mail: wang_haoquan@nuc.edu.cn

experiments indicate that this global algorithm can sim-
ulate the more complex medium. Using the algorithm to
calculate travel-time and paths of tracing rays, it is more
rapid and accurate than the other conventional meth-
ods [11]. The linear travel-time interpolation algorithm
is improved by the method of ray tracing based on finite
difference scheme of eikonal equation. At the same time,
Asakawa also theoretically proved that the LTI algorithm
is an advanced form of the method which is proposed by
Vidale [12].

2. Travel-time and path tracing algorithm

Supposing the entire rectangular region is a grid, a
ray goes through the grid boundary and arrives at the
point C between A1 and A2, as shown in Fig. 1. The
formula calculating the local minimum travel-time will
be deduced in the following [11].

Assuming that the grid’s slowness is S, the length be-
tween the discrete points A1 and A2 is L, the travel-time
of A1(x, y) and A2(x, y) is TA1 and TA2, respectively,
C(r, y) is the intersection of A1A2 and a ray which is
from P , the travel-time from A1 to C can be calculated

TC = TA1 +
(xC − xA1)

L
(TA2 − TA1) . (1)

On the condition of TC being known, the travel-time
from C to P can be obtained

(521)
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Fig. 1. Intersection schematic drawing of the bound-
ary and rays.

TP = TC + s
√

(xP − xC)2 + (yP − yC)2 . (2)
Substitute Eq. (1) into Eq. (2) as the following:

TP = TA1 +
(xC − xA1)

L
(TA2 − TA1)

+ s
√

(xP − xC)2 + (yP − yC)2 . (3)
Supposing r − xC , ∆T = TA2 − TA1, then

TP = TA1 +
(r − xA1)

L
(∆T )

+ s
√

(xP − xC)2 + (yP − yC)2 . (4)
The partial derivative of TP about r is equal to zero.
That is

∂TP

∂r
= 0 . (5)

We can archive

r = xP − (yP − yC)∆T√
L2s2 −∆T 2

. (6)

Substituting Eq. (6) into Eq. (4) further gives

TP = TA1 +
(xP − xA1)

L
∆T

+
(yP − yC)

L

√
L2s2 −∆T 2 . (7)

3. Drawbacks of LTI algorithm

Suppose the model I is a square which is divided into
3× 3 grids. The middle grid is the low velocity area and
the sonic velocity is 700 m/s. In other grids the sonic
velocity is 3500 m/s. Model I is shown in Fig. 2.

We only consider the condition that the launching
point is 1 and the receiving points are 2, 3 and 4. The
paths are obtained through LTI algorithm and shown in
Fig. 3.

In Fig. 3 the real lines are paths of rays through LTI
algorithm. The dashed line is the shortest path about
travel-time from 1 to 3 point theoretically. That is to
say paths solved by the LTI algorithm do not go round
the low velocity area if the launching point, the receiving
point and the low velocity area distribute on the same
column. Otherwise, the other paths can go round the
low velocity area.

Because the right grids of the column at which the
launching point, the receiving point and the low velocity

Fig. 2. Model I.

Fig. 3. Paths of model I.

area locate are scanned only toward right and the left
grids are scanned only toward left, the path is always
connected between the launching point and the receiving
point. As a result, it is impossible to go round the low
velocity area and the correct path about the minimum
travel-time cannot be obtained.

The LTI algorithm has a drawback: rays cannot go
round the low velocity area if the launching point, the
receiving point and the low velocity area distribute on
the same column (row). Aiming at this drawback, we
have made improvement on LTI algorithm.

4. Improvement of LTI algorithm

The improved LTI algorithm is composed of two parts:
forward processing and backward processing.

4.1. Improvement of forward processing

Equation (7) is the basic formula of forward process-
ing. Using it, the minimum travel-time from the launch-
ing point to discrete points can be calculated when the
distribution of discrete points in grids is known.

The steps of forward processing algorithm could be
described as following.

(1) Suppose model II is divided into 3×3 grids as shown
in Fig. 4. We calculate the minimum travel-time from
the launching point S to discrete points of the launching
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Fig. 4. Schematic diagram of forward processing steps
(1) and (2).

point grid and regard these discrete points as the sec-
ondary launching sources.

If locations of S, A, B, C, D, E, F and G are known,
the travel-time from S to discrete points A, B, C, D,
E, F and G can be deduced. According to Eq. (7), the
minimum travel-time from S to any point in the grid can
be calculated.

(2) We calculate the minimum travel-time of all dis-
crete points which are on boundaries of grids. These grids
locate in the launching point grid’s column. The corre-
sponding discrete points are regarded as the secondary
sources.

Firstly, travel-time of discrete points is calculated. The
discrete points are on boundaries of the grid which is
below the launching point grid. Here, the rays from the
upper boundary (CDE) are only considered.

For example, the minimum travel-time t1 can be ob-
tained from a point in CD to O point, the other minimum
travel-time t2 can be obtained from a point in DE to O.
So t = min(t1, t2) is regarded as the travel-time of O
point. The corresponding intersection point of boundary
is recorded as the secondary source.

The process is repeating one by one. Finally travel-
-time of every discrete point is obtained. These discrete
points are in boundaries of grids which are in the same
column with the launching point grid.

(3) We calculate the minimum travel-time of all dis-
crete points which are on boundaries of grids. These grids
locate in the launching point grid’s row. The method of
calculation is the same as step (2). The corresponding
discrete points are regarded as the secondary sources.

We start at the launching point grid’s row. After ob-
taining travel-time of every discrete point which is on
boundaries of the launching point grid, we carry out scan-
ning from the right (left) one by one until the right (left)
boundary of the model is finished. In the scanning pro-
cess, the minimum travel-time and the secondary source
should be amended if travel-time is smaller than the orig-
inal travel-time. Otherwise the original value and the
original secondary source should be retained. The pro-
cess is shown as Fig. 5.

Fig. 5. Schematic diagram of forward processing
step (3).

(4) The rays go toward only one direction. These rays
are in grids which are in the same row or column with the
launching point grid. In the other grids four directions
are involved for the minimum travel-time.

The left boundary and upper boundary are taken for
the grid which is in right bottom of the launching point
or the secondary source. The left boundary and lower
boundary are taken for the grid which is in right up-
per of the launching point or the secondary source. The
right boundary and lower boundary are taken for the
grid which is in left upper of the launching point or the
secondary source. The right boundary and upper bound-
ary are taken for the grid which is in left bottom of the
launching point or the secondary source. Ten correspond-
ing points are found separately through this method. The
way of up and down about cross-scanning is applied to
calculate travel-time.

Fig. 6. Schematic diagram of cross-scanning about seg-
ment EPQ.

We assume that the right bottom grid of the launching
point S is at the intersection of No. 2 row and No. 2
column (shown as Fig. 6).

Ten points (F, G, H, I, J, K, L, M, N and O)
around the upper boundary (segment EPQ) are applied
to calculate travel-time (shown as Fig. 6).

Ten points (D, C, V , U , T , M , L, K, Q and P )
around the left boundary (segment EON) are applied
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Fig. 7. Schematic diagram of cross-scanning about seg-
ment EON .

to calculate travel-time by means of the method (shown
as Fig. 7).

(5) On the basis of calculating travel-time of each grid,
whole global travel-time which is from the launching
points to the receiving points can be archived through
adding up travel-time. The least global travel-time is
the minimum travel-time.

4.2. Simplified backward processing

Equation (6) is the fundamental formula of ray tracing
backward process. Its function is that the shortest path
can be deduced when whole travel-time of boundaries in
a grid is known.

The steps of backward processing algorithm could be
described as following:

(1) The discrete point which is the minimum travel-
-time to the receiving point in the receiving point grid
can be obtained through Eq. (6). The shortest path is
the line of the discrete point and the receiving point.

Formula of travel-time ti is
ti = t′ + s · di . (8)

t′ is the travel-time which is obtained through forward
process about a discrete point, di is the distance from the
discrete point to the receiving point, s is the reciprocal
of velocity. s = 1/v. s is so-called slowness.

The minimum travel-time is t = min(t1, t2, . . . , ti, . . .).
We assume the discrete point B′ exists in the receiving
point grid. t is the sum of travel-time from the launch-
ing point S to B′ and travel-time from point B′ to the
receiving point R (shown as Fig. 8).

(2) According to the discrete point B′ and the maxi-
mum gradient about the travel-time, we can find out the
intersection point in neighboring segments.

We assume that the local minimum travel-time which
is from a point in A′B′ to the receiving point R is tC1.
The point is r1. The local minimum travel-time which
is from a point in B′C ′ to the receiving point R is tC2.
The point is r2. If tC1 < tC2, r1 becomes the intersection
point about the local minimum travel-time, otherwise r2

becomes this intersection point. r1 is the intersection
point shown in Fig. 7.

Fig. 8. Schematic diagram of backward processing.

(3) We regard the intersection point as a new receiving
point and repeat steps (1), (2) until the launching point
grid.

(4) We connect the launching point, all intersection
points and the receiving point, the tracing path of rays
is completed (shown as Fig. 7).

(5) Dealing steps (1)–(4) with all launching points and
receiving points, all paths in materials can be traced.

The above is the realizable course of backward process.
Due to the introduction of Eq. (6), the calculation

about paths is complex and line connecting is inconve-
nient in the course of backward processing. In order to
solve the problem, we regard a discrete point directly as
the secondary source to scan the other seven points in
a grid. When the minimum travel-time is obtained, the
corresponding discrete point is regarded as the next sec-
ondary source. The same method is used till the launch-
ing point.

In the course of realizing the algorithm, we will meet a
case that four points are around a discrete point. There
will be small change in the algorithm. All discrete points
in neighboring grids are scanned. A discrete point of
the minimum travel-time is regarded as the secondary
source. Particularly there should be a course to judge
stop otherwise the process will continue so as to fall into
an endless loop.

The advantages of simplified backward processing are
as follows: it simplifies the course of editing program, is
benefit to line connecting. However, the simplified algo-
rithm also brings loss of accuracy. Using the method of
increasing in number of grids can avoid the drawback.

5. Experimental results

Suppose the model I is a square which is divided into
3×3 grids (shown as Fig. 2). It is 3 meters in length and
3 meters in width. The middle grid is the low velocity
area and the sonic velocity is 700 m/s. In other grids the
sonic velocity is 3500 m/s. The tracing paths of model
I which is obtained through the improved LTI algorithm
is shown in Fig. 9.

From Fig. 9 we can see that the tracing path about the
minimum travel-time from point 1 to point 3 is composed
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Fig. 9. Linear interpolation ray tracing paths of
model I.

of the oblique line in the launching point unit, the left
boundary of the low velocity area, and the oblique line
in the receiving point unit.

TABLE
Comparison of the minimum travel-time.

The minimum
travel-time
from point 1
to point 2

The minimum
travel-time
from point 1
to point 3

The minimum
travel-time
from point 1
to point 4

LTI algorithm 9.1652× 10−4 0.0031 9.1652× 10−4

The improved
LTI algorithm

9.1652× 10−4 9.2459× 10−4 9.1652× 10−4

Fig. 10. Model III: 1 — the first low velocity area, 2 —
the second low velocity area, 3 — the third low velocity
area.

The minimum travel-time from the launching point to
the receiving points through the LTI algorithm and the
improved LTI algorithm is showed in Table. The min-
imum travel-time from the launching point 1 to the re-
ceiving point 3 though the improved LTI algorithm is far

Fig. 11. Paths of model III: 1 — the first low velocity
area, 2 — the second low velocity area, 3 — the third
low velocity area.

smaller than that of the LTI algorithm. The minimum
travel-time of the improved LTI algorithm approaches
the theoretical value.

Model III is shown in Fig. 10. Its entire region is di-
vided into 20 × 16 grids. In this model the black re-
gion stands for low velocity areas, the sonic velocity is
800 m/s. The sonic velocity of other region is 3200 m/s.
Ultrasonic is set from the first row and received by the
last row.

The paths of adopting the improvement on ray tracing
algorithm have been shown in Fig. 11.

In Fig. 11 we can see when launching points, receiving
points and low velocity areas are not in the same columns,
the paths which are obtained through the improvement
of LTI algorithm can go round three low velocity areas.
When launching points, receiving points and low velocity
areas are in the same columns, paths can also go round
low velocity areas.

6. Conclusion

The improved linear interpolation ray tracing algo-
rithm adopts a cross-scanning strategy to carry out for-
ward processing and uses discrete points as the secondary
sources to simplify backward processing. The rays can
go round low velocity areas located in the same column
(row) of launching points and receiving points. The ex-
periment shows that the improvement of LTI algorithm
is correct and effective.
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