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We theoretically study possible domain-type collective dimerizations of graphite induced by inter-layer charge
transfer excitations in the visible region. Using the semiempirical Brenner theory, we have calculated the adiabatic
energy along the path that starts from original two distant graphite layers, but finally reaches the dimerized
domain which consists of about 100 carbons with inter-layer σ-bonds. The energy barrier between this new
domain and the starting graphite is shown to be of the order of 1 eV, being easily overcome by applying a few
visible photons. We have also shown the optimal path of transformation via step by step increase of the domain size.

PACS numbers: 81.30.Hd, 61.66.−f

1. Introduction

Recently, one can observe rapidly growing interest in
experimental and theoretical investigations of novel car-
bon based materials. This is closely related to the pecu-
liar properties of the carbon, developing sp, existing in
the variety of phases with sp, sp2 and sp3 hybridization
and to the development of new experimental methods in-
volving femtosecond laser pulses that are expected to lead
to important applications for medicine, electronics and
nanoengineerings [1–3]. Recent experiments [3–5] sug-
gest a possibility of photogeneration of non-equilibrium
long-lived (metastable) phase(s) with inter-layer σ bonds
between two distorted graphite layers. In Kanazaki’s ex-
periment [3, 4], graphite was illuminated by femtosec-
ond pulse of laser light with the energy 1.57 eV polarized
perpendicular to its layers. After this illumination, a
new buckling domain has appeared: a six member car-
bon ring was deformed in the way that 4 atoms extruded
out of the layer and 2 intruded inside of the layered crys-
tal. The resulting domain, consisting more than 1000
atoms, was stable for several days at room temperature.
In the Raman et al. [5] experiment another structural
change in the graphite was induced by a femtosecond
laser pulse irradiation. Following an initial contraction
of the interlayer spacing by less than 6%, the graphite
was driven nonthermally into a transient new state with
sp3-like hybridization, involving interlayer bonds. This
led to the contraction of the interlayer distance from the

initial 3.35 Å (graphite) to final 1.9 Å in a new, photo-
generated phase.

These transformations seem to belong to the so-called
photoinduced phase transition (PIPT) [6–9]. However,
in this case we are uncovering a new aspect of PIPT.
Usually, photoexcited electron in an insulating crystal in-
duces a local lattice distortion and such a sudden change
of the charge distribution ultimately results in new equi-
librium atomic positions within the excited state. This
idea is associated with the hidden multistability (Fig. 1):
besides its true ground state, a material also possesses
a false, metastable one [1, 6]. One can assume that the
ground and metastable states are separated by a high
energy barrier, which is unaccessible by thermal fluctua-
tions; due to photoexcitation and lattice relaxation, the
system may jump from ground state to the metastable
one, resulting in new electronic and structural orders.
This type of non-equilibrium phase transition has already
been observed recently in many organic molecular solids,
organic metal-complexes crystals and in the perovskite
type compounds [6, 10]. Particular issue of the photo-
generated phase transformation observed in [3–5] is the
fact that graphite is not an insulating material and PIPT
scenario as described above has to be revisited.

In this paper, we will study theoretically a possibility
of generation of a novel graphite domain consisting of
locally dimerized graphite layers with σ-type inter-layer
bonds. We will begin from examining several possible
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Fig. 1. Schematic idea of photoinduced phase transi-
tion. Material besides its true ground state, also pos-
sesses a false one, separated by a high energy barrier,
which is unaccessible by thermal fluctuations. However
due to aforementioned photoexcitation and lattice relax-
ation, the system may jump from ground state to the
metastable one, resulting in completely new electronic
and structural orders.

candidates for such a new domain structure and the op-
timal one will be indicated. Then we will investigate
transformation path where initial domain evolves, step
by step along potential energy surface.

One can view/consider this phenomenon in a wider
context of the graphite–diamond transformation. Theo-
retical investigations in this area have been undertaken
by Cohen et al. [11, 12]. These authors, by means of local
density function (LDF) estimated the energy barrier be-
tween the graphite and the diamond to be 0.33 eV/atom.
This rather large value is due to the sp2 → sp3 inter-layer
bond conversion. This fact is manifested in high pressure
and high temperature (3000 ◦C, 15 kPa) [13, 14] or strong
X-ray beams [15] experimental realizations of the direct
transformation. In this type of direct synthesis, a large
amount of energy is distributed over the crystal, result-
ing in a global, simultaneous conversion of a macroscopic
number of carbon atoms.

Our present problem is different from these global
phase transition. We are considering a local and nonequi-
librium phase transformation. The main part of the crys-
tal still will persist in its original semimetallic phase, and
a newly photogenerated domain with the inter-layer σ-
-bonds is immersed in it, breaking the translational sym-
metry of this crystal lattice. The energy barrier to cre-
ate this new domain is strongly affected by the domain
boundary. Unlikely to the case of the conventional global
and simultaneous transformation, we will be discussing
the case that some translational symmetry of the crys-
tal lattice will be preserved (even at the top state of the
energy barrier of the phase transition). The important
question of early stage dynamics, involving the problem
of localization of excited electron in semimetallic struc-
ture will be considered elsewhere.

2. Adiabatic potential energy surface

2.1. Model and method

In our model, we consider two, initially non interact-
ing graphite layers with the ABAB-type stacking. Our
new domain, whatever it may be, is immersed in the
semimetallic graphite, and hence all the carbons are ex-
pected to be always almost neutral. We expect that total
number of atoms taking part in this transformation will
be about 1000 atoms, and hence the surrounding original
graphite has to be at least one order greater than these
atoms. To handle such a great number (≈ 10000) of
atoms with no translational symmetry, methods like the
LDF are no longer realistic, and in fact, prohibitively dif-
ficult. Henceforth we employ the semiempirical Brenner
potential theory [16]. This potential is widely used in var-
ious calculations of carbon and hydrocarbon based clus-
ters. In contrast to the Lennard–Jones two-body type po-
tential theory, the Brenner potential takes 3- and 4-body
effects into account as a change of an angle between each
bond or as a change of coordination number of each spe-
cific atom. The parameter values of this potential are de-
termined semiempirically, so that they take into account
almost all existing experimental and theoretical data of
carbon clusters [16]. Thus it is appropriate to describe
vacancies, interstitials and dislocations in large clusters
of neutral carbon atoms.
2.1.1. Brenner’s potential

The cohesive energy of material is represented as a sum
over the bonds in the following manner:

E =
∑

i

Ei , (1)

where Ei is a contribution from atom i. Following Bren-
ner [16], the sum over the bonds used in our research is
represented as follows:

Ei =
∑

j(<i)

[
VR(rij)− B̄ijVA(rij)

]
. (2)

The sum is taken over the bonds between atom j and
atom i, with a length (≡ rij) in between. It consists of
the two pair potentials VA(rij) and VR(rij) that represent
an attractive and a repulsive coupling within the bond,
respectively. They are given by

VA(rij) = λfCC(rij)De
CCSCC/(SCC − 1)

× exp
(
−

√
2

SCC
βCC

(
rij −Re

CC

))
, (3)

VR(rij) = λfCC(rij)De
CC/(SCC − 1)

× exp
(
−

√
2SCCβCC

(
rij −Re

CC

))
, (4)

where values of parameters, according to Brenner [16],
are given by Re

CC = 1.315 Å, De
CC = 6.325 eV, βCC =

1.5 Å−1, SCC = 1.29, δCC = 0.80469, R
(1)
CC = 1.7 Å,

R
(2)
CC = 2.0 Å, α0 = 0.011304, c2

0 = 381, d2
0 = 6.25.

They are fitted so they reproduce all known experimen-
tal and theoretical data [16]. The parameter λ was fitted
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to be λ = 0.49, so that it reproduces the energy bar-
rier (0.33 eV/atom) obtained by the LDF calculation of
Cohen et al. [14], for the ordinary uniform Graphite–
diamond transition without changing the bond equilib-
rium distance. Thus, our theory is consistent with the
LDF result, if it is used for the uniform phase transition
of an infinite carbon system with the translational sym-
metry. It is worth to be mentioned that, by setting the
parameter at SCC = 2, the pair terms reduce to the usual
Morse potential with a well depth De

CC . Both the bond
coefficient and pair potentials are modulated by the same
cut-off function fCC(rij). It simulates the bond forma-
tion and the destruction during the transformation, and
is given by

fCC(rij)

=





1 , rij ≤ R1
CC ,

cos2
(

π(rij−R1
CC)

2(R2
CC−R1

CC)

)
, R1

CC < rij < R2
CC ,

0 , rij ≥ R2
CC .

(5)

In the formula above R1
CC indicates the distance where

the bond starts to collapse, and R2
CC denotes the final

interaction distance.
The crucial part in the Brenner potential, however, is

Bij factor, which reflects the geometry of the local envi-
ronment of the bond ij. It is defined by:

Bij =
Bij + Bji

2
, (6)

where Bij is given as

Bij =


1 +

∑

k(6=i,j)

GC(θijk)fCC(rik)



−δCC

. (7)

As we can see, the value of the coefficient Bij depends
not only on a bond length rij relative to the equilibrium
distance (≡ Re

CC) but also on the angle θijk between the
bonds. The angle function GC(θijk) is given by the for-
mula

GC(θ) = a0

[
1 +

c2
0

d2
0

− c2
0

d2
0 + (1 + cos θ)2

]
. (8)

This formula favors both the sp2 and sp3 hybridizations
where the angles between the bonds are equal to 120◦ and
109.47◦, characteristic to the graphite and the diamond
structures, respectively. Although Brenner’s potential
does not take into account long range (> 2 Å) inter-
actions it does not cause serious mismatch. The trans-
formation occurs only in limited volume (2 layers, 200
atoms each) and the energy difference due to long range
interactions is minor. In such case energy contribution
due to long range interactions is several orders smaller
than due to inter-layer bond formation. Hence in our
calculations we focus our attention to predominant pro-
cess governing the transformation and use of the Brenner
potential seems appropriate.

2.1.2. Model
As mentioned above, we consider initially non-

-interacting two graphite layers (200 × 200 neutral car-

bon atoms), whose each end is connected by the periodic
boundary condition. In Eq. (2), the distance rij is given
by the position vector (≡ r̄) of i-th atom as

rij ≡ |r̄i − r̄j | , (9)
and r̄i is defined as a shift from its original position
(≡ r̄i0) in the graphite as

r̄i ≡ r̄i0

+ En(r̄i0)
[
(∆q + δBd(r̄i0))ēz + ∆Xēx

]
. (10)

The second part denotes the new diplacement. En(r̄i0)
is the envelope of the new displacement

En(r̄i0) = 0.5

× [
tanh (θ ||r̄i0 − ēz(ēz · r̄i0)| − L0|)− 1

]
. (11)

Here ēx, ēz are the unit vectors in the x and z axes, re-
spectively. As shown in Fig. 2, the parameters denoted in
Eq. (10) are as follows: ∆q — the amplitude of the pla-
nar deflation, L0 — the size of the intruded domain, θ —
the domain boundary width and ∆X — the magnitude
of the shear displacement. While Bd(r̄i0) in Eq. (10) de-
notes the buckling pattern within the six membered ring,
and it will be defined in detail in the text later. In Fig. 2
this buckling is symbolically denoted by a zigzag line.

Fig. 2. The distortion pattern used in the calculations:
∆q — the planar intrusion amplitude, δ — the buckling
amplitude, L0 — the system size, θ — the shape coeffi-
cient.

Inside of the intruded domain we thus introduce a
buckling which is perpendicular to the layer with an am-
plitude δ. We will also assume that the center of mass
of the six membered ring is preserved. The deformation
of the second layer is assumed to be symmetric as shown
in Fig. 2. Using this method, one can calculate the adia-
batic energy of the domain formation for selected values
of parameters. The key point is the top of the barrier or
the stable point. The stable point formation is a result
of competition of two processes: the σ-type inter-layer
bond formation resulting in an energy gain, and the sp2

type intra-layer bond tension resulting in an energy loss.
As mentioned before, the energy required for the direct
sp2 → sp3 transition is rather high. Its main reason is a
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long distance between neighboring layers (3.35 Å), while
the inter-layer bond formation starts only at a short dis-
tance (≈ 2 Å [16]). Hence the displacement of the carbon
atoms necessary to create intra-layer σ-type bonds takes
considerable amounts of energy, if it occurs simultanously
all over the crystal. However, in this case the distance
is reduced within a locally intruded domain, so that the
inter-layer bonds are created quite easily resulting in a
lower energy barrier. The energetic cost of shortening the
distance between the layers is spread over as a gradual
tension at the border of the domain, and becomes much
lower than in the case of a direct and global motion.

Using the pattern described in the previous section and
the Brenner potential, we have performed the total cohe-
sive energy calculations. By varying values of selected
parameters (∆q, δ, θ, L0) we have obtained a potential
energy surface (PES) of the conversion, with some ex-
tremal points indicating stable configurations of distorted
structures. Our goal is to find such values of parameters
(∆q, δ, θ, L0) which minimize the energy barrier between
the initial graphite structure and a new one correspond-
ing to a new stable point.

2.2. Results

Due to a large number of degrees of freedom of our
system, there may be various possible buckling patterns.
Hence we focus our attention on the following three ones.

Fig. 3. The three patterns used in the calculations. (1)
Pattern I — carbon atoms are intruded and extruded
alternately along the z axis. (2) Pattern II — carbon
atoms are intruded and extruded alternately (perpen-
dicularly to pattern II along the z axis). (3) Pattern
III applied in calculations with the additional shear dis-
placement; two atoms forming regular line along the x
axis direction are intruded with an amplitude δ, remain-
ing atoms are extruded with the amplitude 0.5δ.

The first is the pattern I, where 3 carbon atoms within
the six membered ring are equally extruded and intruded
alternately along the z axis as shown in Figs. 3 and 4.
The buckling function Bd(r̄i0) in this case is thus deter-
mined.

The second one is the pattern II, where 3 carbon atoms
within the six membered ring are equally extruded and
intruded alternately along the z axis as shown in Figs. 3
and 5. The buckling function Bd(r̄i0) in this case is thus
determined.

The third one is the pattern III, where 4 of carbon
atoms in the six membered ring are extruded and remain-
ing 2 are intruded along the z axis, as shown in Figs. 3

Fig. 4. The pattern I used in the calculations. Carbon
atoms are intruded and extruded alternately along the
z axis.

Fig. 5. Pattern II — carbon atoms are intruded and
extruded alternately (pependicularly to pattern II)
along the z axis.

and 6. In this case, in order to preserve center of mass,
the amplitude of the buckling of extruded atoms is one
half of intruded one. The buckling function Bd(r̄i0) of
this case is thus also determined. Furthermore, we apply
additional shear displacement ∆X along the x axis as
also shown in Fig. 6.

Fig. 6. The pattern III applied in calculations with the
additional shear displacement; two atoms forming regu-
lar line along the x axis direction are intruded with an
amplitude δ, remaining atoms are extruded with the am-
plitude 0.5δ. In order to optimize inter-layer the bond
angles, both deflated domains are shifted relatively in
the x direction, as denoted by ∆X (> 0).

Using the minimization technique described in the last
section, we have performed large scale (80000 atoms) cal-
culations using these three aferomentioned patterns.

In the case of pattern I the total energy is shown in
Fig. 7, wherein the horizontal axis denotes the total in-
trusion (δ + ∆q), whose zero corresponds to the starting
graphite. The energy barrier is Eb = 1.07 eV, however
the depth of the potential well representing a new phase
is only 0.19 eV. At around δ + ∆q ≈ 0.7 Å ∼ 0.8 Å, we
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have a maximum and a minimum, when L0 = 5.68 Å,
∆q = 0.72 Å, δ = 0.11 Å, θ = 0.7 (1/Å). The whole
structure at this minimum is described in Fig. 4.

Fig. 7. The PES of the transformation with the pat-
tern I. The horizontal axis indicates the total intrusion
of the domain (δ + ∆q). The second minimum occurs
when the total intrusion becomes as δ + ∆q = 0.83 Å
with an energy barrier 1.07 eV.

In the case of pattern II the total energy is shown in
Fig. 8, wherein the horizontal axis denotes the total in-
trusion (δ + ∆q), whose zero corresponds to the starting
graphite. The energy barrier is Eb = 1.29 eV and the
depth of the potential well representing a new phase is
much larger but still rather shallow this time (0.28 eV).
At around δ + ∆q = 0.83 Å, we have a minimum, when
L0 = 5.68 Å, ∆q = 0.67 Å, δ = 0.15 Å, θ = 0.8 (1/Å).
The whole structure at this minimum is described in
Fig. 5.

Fig. 8. The PES of the transformation with the pat-
tern II. The horizontal axis indicates the total intrusion
of the domain (δ + ∆q). The second minimum occurs
when the total intrusion becomes as δ + ∆q = 0.82 Å
with an energy barrier 1.29 eV.

In the case of pattern III the calculated energy is shown
in Fig. 9. Although the intrusion amplitude has the sim-

ilar value to the case of the pattern I (∆q = 0.67 Å),
in this case we obtain a nearly more than twice as large
buckling amplitude, δ = 0.24 Å. However, the energy
barrier (Eb = 0.88 eV) becomes much lower than in the
previous case. Furthermore, by shifting the layers in the
opposite direction by ∆X = 0.35 Å, we obtain a quite
stable phase with the nearly 0.4 eV depth. In Fig. 10, we
have shown the total energy in a 2D space, as a function
of ∆q and (δ + ∆q). One finds that ∆q ≈ 0.6 Å and
δ + ∆q ≈ 0.7 Å ∼ 0.8 Å corresponds to the barrier top,
and for δ + ∆q = 0.91 Å, a stable domain is formed with
σ-type inter-layer bonds. In Fig. 11, the whole structure
at the new minimum is shown.

Fig. 9. The PES of the transformation with the pat-
tern III. The horizontal axis indicates the total intrusion
(δ + ∆q) of the domain. The second minimum occurs
when the total intrusion δ + ∆q = 0.91 Å with the en-
ergy barrier 0.88 eV. This energy barrier may be easily
overcome by visible excitations (≈ 3 eV) and the system
may reach the second minimum.

Fig. 11. The structure of the pattern III with the ad-
ditional shear displacement.

Obviously, patterns I, II and III do not exhaust all the
possible buckling patterns. So, we have examined various
other buckling patterns. Though variety of (meta)stable
phases would be observed with respective different depths
of potential well, the lowest energy barrier occurs in pat-
terns I and III.
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Fig. 10. The detailed PES of the structure with the pattern III. The total energy is plotted versus the total intrusion
(δ + ∆q) and intrusion amplitude ∆q. When ∆q ≈ 0.6 Å and δ + ∆q ≈ 0.8 Å a stable domain with σ-type inter-layer
bonds is formed. The red line indicates the minimal ascent path from the starting graphite to the new domain structure.

One can conclude that the pattern III shown in Fig. 11
is the most possible domain. The energy barrier is of
the order of 1 eV, being easily overcome by a few visible
photons as schematically shown in Fig. 8. The resultant
structure agrees well with the experiment [3, 4]. More-
over, if we take the average over the buckling within each
layer, the new inter-layer distance is about 2 Å, which
agrees well with the experiment [4, 5].

2.3. Size evolution

Though this paper is mostly concerned with phenom-
ena which occur after initially overcoming the transition
barrier, one may ask the question what is energetic size
evolution of the system? The validity of the question is
motivated by the possible scenario of the system growth.

As mentioned before, we may treat the energetic evo-
lution of the system by the following, qualitative obser-
vation. The occurrence and height of the barrier is a
result of the competition between energy loss due to in-
tralayer’s bond tension and energy gain due to intralayer
bond formation. Henceforth we may induce that, from
qualitative point of view, only the initial transition from
graphite to “diaphite” should be expensive since we have
to transform number of atoms proportional to L2. Then
further increasing size of the system would require to
transform atoms only on the circumference of intruded
domain. Hence the number of atoms on the circumfer-
ence is now proportional only to L, we expect linear in-
crease of energy barrier instead of exponential one, as in
the case of direct transition.

The results of calculations using our method were pre-
sented in Fig. 12. The black line indicates height of

Fig. 12. Energy barrier of “diaphite” domain forma-
tion with respect to its radius. The black line indi-
cates height of energy barrier Eb of direct transition
from graphite to “diaphite” with defined value L. The
red line indicates evolution of energy barrier via indi-
rect transition i.e. first overcoming the initial barrier
and then increasing the size.

energy barrier Eb of direct transition from graphite to
“diaphite” with define value L. We may observe that
with increasing value of L, Eb is getting higher rapidly
from 0.88 eV up to 2.57 eV for L = 12 Å and 5.97 eV
for L = 24 Å. From the other hand, the red line indi-
cates evolution of energy barrier via indirect transition
i.e. first overcoming the initial barrier and then increas-
ing the size. The increase this time is much slower with
1.4 eV for L = 12 Å and 2.2 eV for L = 24 Å. The calcu-
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lations conclude the hypothesis of system evolution and
maybe connected with graphite–diamond conversion. In
the case of heat and pressure transition much energy is
required since transformation occurs simultaneously in
large volume of the material. However with the help
of photoexcitation it may be possible to conduct step
by step conversion, as in the case of “diaphite” where
only first step is of relatively full cost. However fur-
ther increase of “diaphite” domain does not require large
amounts of energy and it is possible to “jump” from one
stable valley into another using small pulses.
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