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Lattice Green Functions on a Two-Dimensional Rectangular
Lattice with Next-Nearest Neighbor Interaction
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The analytic formula for the on-site Green function on the two-dimensional rectangular lattice is shown for
arbitrary energy, both within the band (complex Green function) and outside the band (real Green function),
expressed by means of elliptic integrals. The recursion formulae enabling calculation of the Green functions on
other lattice sites are shown.
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1. Introduction

Lattice Green functions appear in many branches of
physics, such as: problems of bound states on a lattice,
theory of diffusion, random walks, band structure calcu-
lations as well as in calculations of resistivity of infinite
resistor lattices. They were a subject of examination
in sixties, in connection with the investigations of spin
waves interactions in the ferromagnetic Heisenberg model
(see, e.g. [1]). After a break, an interest in this field slowly
grows again, in connection with high-temperature super-
conductivity theories resorting to Bose-condensation of
bound pairs of charges. For two-electron bound pairs in
an empty lattice not only we can give the exact eigenen-
ergies and eigenvalues of such pairs but also express them
in analytic form — a rare case in the solid state theory.
The formulae for lattices with nearest neighbor interac-
tions using elliptic integrals can be found in literature.

An interesting problem is considering next-nearest
neighbor interaction, especially in the context of rel-
atively large values of such interactions found in
some high-temperature superconductors (on quasi-two-
-dimensional lattices). These interactions have a large
influence on, e.g., phase diagrams of the Hubbard type
models or on the evolution of the superconductivity be-
tween the limits of BCS and Bose-condensation in these
models. Numerically such Green functions on a sim-
ple cubic lattice in the direction [111] were calculated
by Krompiewski [2], the analytic form for the recipro-
cal space vector (π, π, π) in the same lattice was given
by Bahurmuz [3]; for two-dimensional rectangular lat-
tice the recursion formula was published by Morita [4].
Let us note that the imaginary part of the on-site lattice
Green function is proportional to the density of states
for a given lattice. In case of the rectangular lattice it
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was given, e.g., by Xing et al. [5]. Although sometimes
the density of states is all we need, in many calculations,
for example in problems of bound- and resonant states
on a lattice, we also need the real part; often the Green
functions connecting different lattice sites, not only the
on-site one are useful.

The author does not know any paper describing the full
Green function on a two-dimensional rectangular lattice
with nearest- and next-nearest hopping. The present pa-
per fills in this gap, showing the on-site Green function
for this lattice for arbitrary energy, expressed by means
of elliptic integrals. The recursion formulae enabling us
to calculate Green functions on other lattice sites are also
shown.

2. Derivation

We start with the usual definition of the Green func-
tion G(ri, rj):

(E −H)G = δ(ri − rj) , (1)
where E is arbitrary energy and H is linear, differential
operator on the lattice, e.g., the hopping part of the Hub-
bard Hamiltonian

H =
1
N

∑

〈〈i,j〉〉

∑
σ

ti,jc
†
iσcjσ , (2)

where N is the number of lattice sites and summation
is performed over nearest- and next-nearest neighbors of
the rectangular two-dimensional lattice. The Green func-
tion can be given by means of the Fourier transform as

G(E, ri, rj) =
1
N

∑

k

e ik·(ri−rj)

E − εk
, (3)

where
εk = −2tx cos kxax − 2ty cos kyay

+4t2 cos kxax cos kyay . (4)
In general, in the continuous limit (lattice constants ax
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and ay omitted after a trivial variable change):

Gi,j(E) =
1

(2π)2

∫ ∫ π

−π

dkx dky

× e ik·ri e− ik·rj

E − γ1 cos kx − γ2 cos ky − γ3 cos kx cos ky
. (5)

When we deal with the infinite lattice, the Green func-
tion is in fact site-independent and we can replace it by
the one depending on the relative indexing

Gm,n(E) =
1

(2π)2

∫ ∫ π

−π

dkx dky

× e imkx e inky

E − γ1 cos kx − γ2 cos ky − γ3 cos kx cos ky
, (6)

where ri − rj = (max, nay) (before variable change).
γ3 = 0 corresponds to nearest-neighbor hopping. In case
of the problem of bound states the coefficients γn can
take more complicated forms and depend not only on
the hopping integrals ti,j but also on the momentum P
of the center of mass of the bound pair. In that case the
kinetic energy would be more complicated than Eq. (4);
Eq. (5) would correspond to the Green function on Γ–X
line then, i.e., to Py = 0. After partial integration the
simplest of the integrals of the type given by Eq. (6),
G0,0, takes the form

G0,0 =
2
π

∫ ∞

0

sgn[f(t)]√
at4 + bt2 + c

dt , (7)

where
a = (E + γ2)2 − (γ1 − γ3)2 , (8)

b = 2
(
E2 − γ2

1 − γ2
2 + γ2

3

)
, (9)

c = (E − γ2)2 − (γ1 + γ3)2 , (10)

f = E + γ1 + (γ3 − γ2)(1− t2)/(1 + t2). (11)
This form is ready for the transformation into the elliptic
integral. The result will depend on the solutions t21 and
t22 of the biquadratic polynomial in the denominator of
Eq. (7):

t21 =
−E − γ1 + γ2 − γ3

E + γ1 + γ2 − γ3
, (12)

t22 =
−E + γ1 + γ2 + γ3

E − γ1 + γ2 + γ3
, (13)

on whether they are positive or negative. The signum
in the numerator can be safely omitted, except from the
case of both positive roots, when it can cause disappear-
ing of the real part of the Green function, as will be shown
later.

At the energies E where t21 or t22 change sign the ana-
lytical form of G0,0 also changes. For energies beyond the
band, where both solutions t21 and t22 are negative (and
thus Green function Eq. (7) has no singularities), G0,0 is
given by

G−−0,0 = ± 2
π
√

a

1√
|t2max|

K
(

1− t2min

t2max

)
, (14)

which is purely real. The minus sign is for the negative

energies, plus — for the positive ones; t2min and t2max de-
note this one of the solutions t21 and t22, of the smaller
and of the larger absolute value respectively and K(. . .)
is complete integral of the first kind (a convention of de-
noting K(k2) by a squared modulus is used).

The band extends between the minimal and the max-
imal value in the set S of four elements: S = {γ1 + γ2 +
γ3,−γ1−γ2+γ3,−γ1+γ2−γ3, γ1−γ2−γ3}. At these en-
ergies the Green function has singularities or jumps and
t21 and t22 become zero or diverge. The imaginary part of
Green function may also diverge at the energy equal to
−γ1γ2/γ3, if both roots (12) and (13) are positive and
the discriminant of the polynomial under the square root
in the denominator of equation (7) is positive between
t1 and t2. In that case, the imaginary part of G0,0 has
four jumps and one singularity; the real part of Green
function has a jump at the energy of the singularity, it is
negative for energies smaller than the energy of the jump
and positive for larger energies. If the discriminant is
negative between t1 > 0 and t2 > 0 then the imaginary
part of LGF has two jumps and two singularities. The
real part of G0,0 between the singularities is then zero, is
negative for smaller energies and positive for larger ones.

For some of the gammas being of the same absolute
value the Green function simplifies. If all three γn’s (for
n = 1, 2, 3) are of the same absolute value there are only
two different values contained in the set S — they mark
the band boundaries. The imaginary part of G0,0 has
one jump and one singularity then. If the two of γn’s are
of the same absolute value, then there are three different
elements in S, dividing the band into two regions (Im(G)
has two jumps and one singularity); when all γn’s are
different the band is divided into three regions by four
different values from S (or four, when the singularity in
−γ1γ2/γ3 appears).

Within the band at least one of t21 and t22 or both are
positive. The analytic solutions in these cases are given
below

G+−
0,0 =

±2
π
√

a

1√
t2p + |t2n|

×
[
K

( |t2n|
|t2n|+ t2p

)
− iK

(
t2p

|t2n|+ t2p

)]
, (15)

G++
0,0 =

±2
π
√

a

1√
t2max

(
g++

r + ig++
i

)
, (16)

where g++
r = 0 or 2K

(
t2min

t2max

)
, g++

i = −K
(
1− t2min

t2max

)
,

and t2p and t2n are the positive and the negative solutions
respectively. Whether g++

r is zero or nonzero depends on
the sign of discriminant of polynomial in Eq. (7), as was
described before. The solutions Eqs (15) and (16) are
accurate only up to the sign. As far as the actual signs
of G0,0 within the band are concerned they are as follows:
Im(G0,0) is taken always positive, what is equivalent to
calculating the resolvent in Eq. (1) with the negative,
infinitesimal, imaginary part added to the energy: E−iε,
0 < ε ¿ 1. The rules of deciding the sign of Re(G0,0)
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were described before. In case all three gammas are of
the same absolute value the sign of Re(G0,0) is the same
as the sign of the product γ1 × γ2 × γ3.

The conditions for t21 and t22 can be expressed in the
form of conditions for the energy E but they become
extremely cumbersome then.

3. Recurrence relations
Once we have G0,0 we need other Green functions, be-

tween other lattice sites. We could calculate them like
Eq. (7) but with the appropriate exponenses in the nu-
merator. Another way is to try to find the recurrence
relations and check, whether there is a finite number of
Green functions enabling us to calculate all the others.

The defining recurrence is as follows:
2EGm,n = −2δm,0δn,0 + γ2

(
Gm,n−1 + Gm,n+1

)

+γ1

(
Gm−1,n + Gm+1,n

)

+
γ3

2
(
Gm+1,n+1 + Gm−1,n−1

+Gm−1,n+1 + Gm+1,n−1

)
. (17)

Another one can be obtained by differentiating by E the
previous relation

2Gm,n + 2EG′m,n = γ2

(
G′m,n−1 + G′m,n+1

)

+γ1

(
G′m−1,n + G′m+1,n

)

+
γ3

2
(
G′m+1,n+1 + G′m−1,n−1

+G′m−1,n+1 + G′m+1,n−1

)
. (18)

G′m,n is given by the equation analogous to Eqs. (5)
or (6), just with the denominator squared and minus in
front.

We can obtain two more relations by partial integration
of the Green function Eq. (6) by parts [6]. Performing
the first integral with respect to x or y yields relations
including m and n, respectively

0 = 2mGm,n − γ1

(
G′m+1,n −G′m−1,n

)

−γ3

2
(
G′m+1,n+1 −G′m−1,n−1 −G′m−1,n+1

+G′m+1,n−1

)
, (19)

0 = 2nGm,n − γ2

(
G′m,n+1 −G′m,n−1

)

−γ3

2
(
G′m+1,n+1 −G′m−1,n−1 + G′m−1,n+1

−G′m+1,n−1

)
. (20)

We can simplify equations for fixed values of m and n

using the symmetry property
Gm,n = G−m,n = Gm,−n = G−m,−n , (21)

obtaining equations for non-negative indices only.

3.1. Constructing closed sets of equations

As can be seen by inspection, we cannot construct a
closed set of equations of the type of Eq. (17) for any
fixed m or n. Yet assembling the derivative equations of
the type (18)–(20) for the Green functions Gm,n within
z-th “layer”, i.e., for m = z with n ≤ z and n = z with
m ≤ z, yields a closed set of equations for Gm,n’s from
z-th layer and derivatives G′m,n’s from layers z − 1, z
and z + 1. Starting from second layer these equation
sets are overcomplete and we can calculate all the vari-
ables (the Green functions and its derivatives) of a given
layer, knowing only the variables from the lower layers.
Thus we can finally obtain all the Green functions and
its derivatives based only on the knowledge of the four
parameters from the first and zeroth layer, e.g.: G0,0,
G1,0, G0,1 and G′0,0.

4. Conclusions

In conclusion, a closed analytic form of the on-site
Green function G0,0(E) on a two-dimensional rectangular
lattice was shown for arbitrary energy. The recurrence
formulae for Gm,n’s as well as for their derivatives were
given and a way to calculate Green function on arbitrary
site based on the knowledge of only four parameters was
shown.
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