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The Falicov–Kimball Model in External Magnetic Field:
Orbital Effects
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We study thermodynamic properties of the two-dimensional (2D) Falicov–Kimball model in the presence of
external magnetic field perpendicular to the lattice. The field is taken into account by the Peierls substitution
in the hopping term. We show how the Hofstadter butterfly is affected by electronic correlations. In the
non-interacting case the field dependent energy spectrum forms the famous Hofstadter butterfly. Our results
indicate that for arbitrary nonzero interaction strength and arbitrary magnetic field there is a gap in the energy
spectrum at sufficiently low temperature. The gap vanishes with increase of temperature for weak coupling,
however, it persists at high temperatures if the coupling is strong enough. Numerical results have been obtained
with the help of Monte Carlo technique based on a modified Metropolis algorithm.

PACS numbers:

1. Introduction

Strongly correlated electron systems have generated in-
terest over the last few decades. It is widely accepted that
many phenomena in condensed matter physics are con-
nected with electronic correlations. Moreover, an exper-
imental progress made both in confining quantum gases
and in preparation of nanosystems leads to requirement
of theoretical models, that allow description of correlated
quantum systems in periodic potentials and under an
influence of the external magnetic field. Unfortunately,
taking into account of all these three factors simultane-
ously is intractable. While the problem of electrons in
a periodic potential under influence of the external mag-
netic field has been investigated since the beginning of
the quantum mechanics, its solutions are known only in
a few cases. In particular, one may prove that in two-
-dimensional fermionic gases orbital effects due to the
magnetic field lead the energy spectrum to form the fa-
mous Hofstadter butterfly. Incorporation of the electron
correlations in such a model encounters yet unresolved
problems, mostly because of lack of relevant mathemati-
cal methods.

The Hubbard model is frequently used as a starting
point for studying strongly correlated systems. Origi-
nally used for a description of the metal–insulator tran-
sition, it reveals interesting solutions, describing various
phenomena observed in strongly correlated systems. De-
spite the simplicity of the model, only a few rigorous
results are known, mostly in one- or infinite-dimensional
cases. Other results have been obtained with the help of
approximate methods. Some attempts have been made
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to analyze the orbital effects in the Hubbard model in an
external magnetic field. Some of them, based on an exact
diagonalization [1], were obtained for relatively small sys-
tems and suffer from the finite size effects. The other at-
tempts based on the mean-field approximation (MFA)[2]
are questionable due to the limited applicability of the
MFA in low-dimensional systems.

The lack of exact solutions for the Hubbard model
and ambiguity of solutions obtained within approximate
methods encouraged us to study even simpler model, i.e.,
the Falicov–Kimball model. It was proposed by Hubbard
and Gutzwiller (for review, see, e.g., [3, 4]) as a simpli-
fication of the Hubbard model and further was redevel-
oped by Falicov and Kimball to study phase transitions in
rare earths and transition metals [5]. The model is a lim-
iting case of the asymmetric one-band Hubbard model
where the mass of spin-down electrons goes to infinity.
It describes a system consisting two kinds of fermions.
One of them are itinerant particles and the others are
massive and therefore localized. The only interaction in
the Falicov–Kimball model is the on-site Coulomb repul-
sion between itinerant and localized particles. In the sec-
ond quantization the model is described by the following
Hamiltonian:

H = −t
∑

〈i,j〉
c†i cj + U

∑

j

f†i fic
†
i ci , (1)

where t is the hopping integral, c†i (f†i ) are the creation
operators of an itinerant (localized) fermion at site i and
U is the Coulomb interaction.

While the Falicov–Kimball model is much simpler than
its predecessor, it still cannot be rigorously solved in a
general case. Fortunately, a significantly larger number of
exact results is known for the the Falicov–Kimball model
than for the Hubbard model [6]. One of the most im-
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portant theorem, proved by Kennedy and Lieb [7], states
that at low enough temperature there is a long range
order for lattices of dimensionality greater than one for
certain fillings and for all values of U . It has been shown
that the ordering comes from effective correlations be-
tween states of one kind, even though the model does not
contain a direct interaction of this type. There are also
important approximate results for the Falicov–Kimball
model (see, e.g., Ref. [8]).

It has been demonstrated that in low dimensions the
Falicov–Kimball model can effectively be analyzed with
the help of the classical Monte Carlo (MC) method
[9, 10]. The method is general and it is possible to apply
it for different lattice geometries and for arbitrary fillings.
The most important aspect is that the model allows us
for investigation of much larger systems than the origi-
nal Hubbard model does. This is of crucial importance
in the presence of magnetic field that results in a forma-
tion of the cyclotron orbits. It is clear that diameters
of the orbits should not exceed the linear system size.
Consequently, in the case of the Hubbard model one can
investigate only extremely high magnetic fields when the
magnetic flux through the lattice cell is of the order of
the flux quantum. This limitation is significantly relaxed
in the case of the Falicov–Kimball model.

In the present paper we investigate a two-dimensional
Falicov–Kimball model in a presence of perpendicular
magnetic field. Since we analyze the spinless Falicov–
Kimball model, the Zeeman term is absent. The effect of
the Zeeman splitting was analyzed in, e.g., Refs. [11]. For
U = 0 the model reduces itself to the Azbel–Hofstadter
model, the solutions of which form the famous Hofstadter
butterfly. The solutions of the U 6= 0 case give important
guidelines how the electronic correlations modify the fine
structure of Hofstadter butterfly.

The outline of the paper is as follows. Section 2 briefly
describes a model and a variation of the Monte Carlo
method which is used to study systems with both clas-
sical and quantum degrees of freedom. In Sect. 3 we
present results obtained for Falicov–Kimball model in an
external, perpendicular magnetic field. Section 4 con-
tains summary and conclusions.

2. Model and computational method

In our study we analyze the extended Falicov–Kimball
model, described by the following Hamiltonian:

H = −
∑

〈i,j〉
tij(A)c†i cj + U

∑

j

f†i fic
†
i ci , (2)

where tij(A) is the hopping integral depending on the
magnetic field through the Peierls phase factor

tij(A) = t exp

(
e i
~

∫ Rj

Ri

A · dr

)
, (3)

and A = B(−ay, (1− a)x, 0) is the vector potential with
the parameter a ∈ [0, 1] that allows one to distinguish
between the symmetric gauge (a = 1/2) and the Lan-
dau gauge (a = 0). In the numerical calculations we

have used the symmetric gauge. The same Hamiltonian
was used by Gruber et al. to analyze flux phases in the
Falicov–Kimball model [12].

In our simulations we use a modified Metropolis al-
gorithm [10]. As our system contains both itinerant
fermions and localized particles, we use the grand canon-
ical partition function in the following form:

Z =
∑

C
Tre e−β[H(C)−µN̂ ], (4)

where C describes configuration of the localized states, β
is the inverse temperature and N̂ is the operator of total
number of itinerant fermions. For a given configuration
C the Hamiltonian H(C) can be diagonalized numerically
and summation over fermionic degrees of freedom gives

Z =
∑

C

∏
n

{
1 + e−β[En(C)−µ]

}
, (5)

where En(C) is n-th eigenenergy of H(C). Introducing
the free energy of the mobile particles

Fe(C) = − 1
β

∑
n

ln
{

1 + e−β[En(C)−µ]
}

, (6)

the partition function can be written in a form analogous
to that used for the Ising model

Z =
∑

C
e−βFe(C) , (7)

where the difference from the Metropolis algorithm is
that we use the electronic free energy instead of the in-
ternal energy. MC simulations allow us to estimate the
partition function and thermodynamic functions such as
the specific heat. Position of the peak in the specific
heat and in the charge density wave (CDW) suscepti-
bility allows one to determine the temperature Tc of the
transition between the ordered and disordered phases [9].

In the present paper we restrict our considerations to a
special case of half-filling both for itinerant and localized
states. We have performed simulations on square lattices
with sizes from 10×10 to 30×30. Here, we present results
for a 20 × 20 lattice. Although for such a system we
are unable to analyze the very fine details of the energy
spectrum, it is possible to obtain the general structure of
the Hofstadter butterfly within a reasonable computation
time.

3. Results

In order to the investigate thermodynamic properties
of the Falicov–Kimball model with orbital effects due to
magnetic field we performed simulations for different val-
ues of the interaction strength U/t and for the entire
range of the magnetic flux penetrating the lattice. It is
convenient to use a dimensionless quantity α = φ/φ0,
where φ0 is the flux quantum and α ∈ (0, 1). It was
shown by Kennedy and Lieb [7] that at low temperature
the localized particles in the half-filled two-dimensional
Falicov–Kimball model form a checkerboard pattern. At
the same time the itinerant particles show the CDW or-
dering. To reveal the most interesting properties of the
model we have performed simulations for temperatures
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below, near and above the critical temperature Tc of the
transition between ordered and disordered phase. The
critical temperature was determined from the peak in
the specific heat versus temperature plot.

The main results are presented in Fig. 1. In the case
of weak interactions, when U ≤ t, the general structure
of the Hofstadter butterfly is nicely reproduced. At tem-
peratures below Tc the structure is similar to the energy
spectrum of the noninteracting fermions, but is split near
the Fermi energy by the band gap. With an increase of
the temperature the gap diminishes and vanishes com-
pletely at the Tc. Above Tc the structure of the field de-
pendent density of states looks similar to the Hofstadter
butterfly, but is smeared because of averaging over dis-
ordered states.

Fig. 1. Hofstadter butterflies for different U/t and
kBT/t. Figures were obtained for a lattice of 20 × 20
sites in half filling for both itinerant and localized par-
ticles. Darker color corresponds to higher value of the
density of states.

Fig. 2. Examples of configurations of the localized par-
ticles at different temperatures in the absence of mag-
netic field.

The effects of temperature on the configuration of the
localized particles is illustrated in Fig. 2. The presented

configurations are “snapshots” of the evolution of the sys-
tem during an MC run. Higher interaction strengths im-
pact the energy structure more strongly. For the inter-
mediate interaction strengths with U ≈ 4t at tempera-
tures below Tc the energy spectrum still reproduces the
Hofstadter butterfly split by the band gap. However,
when the temperature increases, the obtained structure
no longer resembles that for free fermions. Again at the
temperature of Tc the gap vanishes, but for higher tem-
peratures the energy spectrum seems to be weakly de-
pendent on the magnetic field. For a strong Coulomb
interaction with U ≥ 8t the gap persists at arbitrary
temperature and its width is not smaller than U − 8t.
An important fact is that at zero temperature in the ab-
sence of the interaction the magnetic field switches the
system between an insulating (or half-metallic in an infi-
nite system) and a metallic phase, which results from the
structure of the noninteracting Hofstadter butterfly. In
the presence of the interaction this behavior is not always
reproduced. At temperatures below Tc for all analyzed
values of the ratio U/t the sample is always in the insu-
lating state, the same as for U > 8t. On the other hand,
when the temperature is above Tc for weak and interme-
diate interaction U ≤ 2t the magnetic field switches the
system from metallic to insulating phase (Fig. 3).

Fig. 3. Density of states obtained for various values of
the magnetic flux α and the Coulomb repulsion U/t.
All densities of states were obtained from simulation at
temperature T ≈ 1.5Tc, for a lattice of 10×10 sites with
fixed boundary conditions.

4. Conclusions and outlook

We have shown that the numerical analysis of the
Falicov–Kimball model in external magnetic field allows
one to investigate the impact of the electron correlations
on the Hofstadter butterfly. We investigated thermody-
namics of the model with the Monte Carlo algorithm for
various values of Coulomb interaction, magnetic flux and
temperature. Simulations were carried out for lattices of
10×10 to 30×30 sites for half filling for both kinds of par-
ticles. For all probed values of U at temperatures below
the Tc states are insulating independently of magnetic
field. For high values of the interaction strength U ≥ 8t
samples seem to be insulating at arbitrary temperature.
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An interesting result is that for weak and intermediate
interaction strength the presence and magnitude of the
energy gap depends on the magnetic field in irregular
manner, as in the noninteracting case. We show that for
all investigated values of the Coulomb repulsion there
is a significant smearing of the fine fractal structure of
the energy spectrum. It occurs due to a broadening of
quasiparticle levels. Nevertheless, it seems that the main
branches of the Hofstadter butterfly survive (though split
by the energy gap) in the presence of the Coulomb inter-
actions.

The same analysis can be repeated for the Falicov–
Kimball model away from half filling. In this case at low
temperature the localized particles form patterns which
are incommensurate with the underlying lattice [13],
which results in a rich structure of the density of states
even without magnetic field. The fractal structure of the
Hofstadter butterfly is a result of an interplay between
two length scales: lattice constant and the Landau ra-
dius. In the case of the Falicov–Kimball model away from
half filling there is an additional length scale, namely the
period of the pattern formed by the localized particles.
Therefore, one may expect the structure of the density
of states versus the flux to be even richer than the Hof-
stadter butterfly.

Another extension of the present approach would be
to take into account the spins of the itinerant and/or
localized particles. It would lead to the Zeeman split-
ting of the energy levels, which in turn would result in
drastic and nontrivial changes of the density of states at
the Fermi level [14]. Therefore, in such a case the sim-
ple description of the conditions for the metal–insulator
transition presented in the previous section would not be
valid any more.
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