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Inhomogeneities in Superconductors Described
by the Two-Component Model
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We study fluctuations of the superconducting order parameter of s-wave symmetry caused by nonmagnetic
disorder present both in the boson and fermion subsystems using the Bogoliubov–de Gennes equations. In
particular, we are interested if some features of the d-wave model persist for s-wave symmetry as well. These
are: positive correlations between positions of impurities and the magnitude of energy gap, the homogeneity of
the local density of states at low energies, nanoscale inhomogeneity of the coherence peak positions and their
non-uniform height. We have found that spatial variations of s-wave order parameter are positively correlated
with the positions of impurities. Such behavior has been observed in scanning tunneling measurements on d-wave
symmetry BSCCO-2122 superconductors.
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1. Introduction

Analysis of how disorder affects the superconductivity
has been a matter of great concern for about last 50 years,
both in experimental and theoretical studies [1]. Consen-
sus about why high temperature superconductors (HTS)
are so insensitive to non-magnetic disorder, despite the
fact that theory suggests its pair breaking character for a
d-wave symmetry case [2, 3], has not yet emerged. This
problem has been given new twist recently with a series
of experiments on the cuprate superconductors [4, 5]. In
particular, measurements of the scanning tunneling spec-
troscopy (STS) for Bi2Sr2CaCu2O8+x revealed existence
of the large intrinsic spatial inhomogeneities. Similar,
even though not so precise, data have been reported on
pnictides [6–8].

In HTS the differences in positions of the coherence
peak(s) in the differential conductance (being a measure
of the superconducting gap) have been observed to vary
by a factor of 2 ∼ 3 over a few lattice constants. Detailed
analysis of the experimental data indicated also other in-
teresting issues such as: (i) homogeneity at low [5] and
very high energies, (ii) asymmetry of the differential con-
ductance between positive and negative bias, (iii) and a
surprising positive correlation of the dopant atoms’ po-
sition with the spectral gap in the local density of states
(LDOS) [9].

Our purpose here is to carry out theoretical calcu-
lations on highly disordered, short coherence length,
s-wave superconductor described by the two component
boson-fermion model [10] using the mean field approx-
imation and Bogoliubov–de Gennes equations. Similar
numerical studies for the one component t–J models have
been investigated by a number of groups considering the
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s-wave [11] and d-wave symmetries [12–16]. In the two-
-component scenario we shall extend their and our previ-
ous analysis [17] exploring the several possible kinds of in-
homogeneities affecting the system. The charge-exchange
driven superconductivity of the boson-fermion model (1)
and its relevance to the high temperature cuprates as well
as other exotic quantum superfluids has been so far dis-
cussed by the number of groups studying homogeneous
[18] or impure systems [19, 20].

2. The model and approach

The boson-fermion model which describes the mixture
of tightly bound local pairs (hard-core bosons) coexisting
with the itinerant holes (fermions) can be represented by
the following Hamiltonian [10]:

ĤBF =
∑

iσ

(
V imp

i − µ
)

ĉ†iσ ĉiσ +
∑

i

(
EB

i − 2µ
)
b̂†i b̂i

+
∑
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tij ĉ
†
iσ ĉjσ +

∑

i

gi

(
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†
i↑ĉ
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)
, (1)

where i and j denote the sites of the two dimen-
sional square lattice. ĉi,σ and ĉ†i,σ (b̂i and b̂†i ) are
fermionic (bosonic) annihilation and creation operators,
µ stands for the common chemical potential which en-
sures the charge conservation. We denote the hop-
ping integral of itinerant fermions by tij and assume
site-dependent energies EB

i of the local pairs and their
coupling gi to fermions. We take into account the
hopping integrals to the nearest neighbor (t) and next
nearest neighbor sites (t′) only. Applying the stan-
dard Hartree–Fock–Bogoliubov decoupling b̂†i ĉi,↓ĉi,↑ '
〈b̂†i 〉ĉi,↓ĉi,↑ + b̂†i 〈ĉi,↓ĉi,↑〉 decomposes the Hamiltonian (1)
into separate boson and fermion parts [21] ĤBF =
ĤB + ĤF, where ĤB =

∑
i[(E

B
i − 2µ)b̂†i b̂i + b̂†iχi +

b̂iχ
∗
i ] with bosonic order parameter χi = gi〈ĉi↓ĉi↑〉

(360)
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and ĤF =
∑

i,j,σ tij ĉ
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i(∆
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i ĉi↓ĉi↑ + ∆iĉ
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i↓). For a given realization of dis-

order we compute at every site the local number of
bosons 〈b̂†i b̂i〉 = 1/2− [(EB

i − 2µ)/4εi] tanh(εi/kBT ) and
〈b̂i〉 = −(χi/2εi) tanh(εi/kBT ) with ∆i = gi〈b̂i〉 and
εi =

√
(EB

i /2− µ)2 + |χi|2.
The fermion part has a BCS-type structure and can

be exactly diagonalized [22] by the Bogoliubov–Valatin
transformation. For the inhomogeneous systems one
has to solve self-consistently the following Bogoliubov–
de Gennes equations [22, 23]
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determining the energies El and coefficients ul
i, vl

i. The
local density of states ρ(i, ω) at site i as function of en-
ergy ω, local fermion, boson and total carrier densities
are in turn expressed by these eigensolutions. We will
also study the correlation functions in real space which
for arbitrary quantities f, h is defined as [22] Cf,h(R) =
∑

i

∑
j(fi−f)(hj−h)/

√∑
i(fi − f)2

√∑
j(hj − h)2 with

R = |i− j|.

3. The results

Disorder in the two-component model can be taken
into account in various ways. Firstly, one can imagine
that impurities change local atomic levels, which in our
model are represented by V imp

i . Secondly, the values of
the hopping integrals tij can fluctuate from site to site,
as dislocations or imperfections may appear with dop-
ing. Thirdly, the value of boson-fermion coupling gi can
be modified. Last, but not least, positions of boson en-
ergy levels EB

i could locally change. Suggestions that in
vicinity of dopants, lattice distortions could locally mod-
ulate the interactions [24] appeared long ago and have
recently been explored to predict an enhancement of the
critical temperature Tc [25] as a result of the proximity
effect.

We focus on the following set of parameters: g0 = 1.0t,
V imp

i = 0.0t, EB
i = 2µ + 0.58t for the superconducting

and EB
i = 2µ +10.65t for non-superconducting host. t is

our energy unit. The size of the system is 57 × 61 sites.
We study the effect of impurities on the local value of
the order parameter ∆i and the evolution of the spectral
gap in the local density of states in inhomogeneous su-
perconductor. It turns out that there exist a number of
correlations, e.g. (i) the values of the gap and positions of
impurities Ri, (ii) the order parameter 〈b̂i〉 and positions
of impurities, (iii) the values of the gap and height of
coherence peaks in local density of states, etc. The auto-
correlation function between values of the gap at different
points serves as a measure of the coherence length. All

Fig. 1. Map of the order parameter ∆i (top left panel),
the correlation functions Cf,h(R) (top right panel) and
the STM spectra taken along vertical line at X = 13
(bottom left panel) and X = 47 (bottom right panel) for
16% of “extended” impurities (marked by circles), which
influence the positions of EB

i − 2µ levels of neighboring
sites changing them from homogeneous value 10.65t to
0t at the impurity, 0.29t at its nearest neighbor site,
0.425t and 0.5t at still further sites. The next nearest
hopping t′ = −0.3t and the total concentration of carri-
ers ntot = 1.4.

Fig. 2. Map of the order parameter ∆i (top left panel),
the correlation functions Cf,h(R) (top right panel) and
the STM spectra taken along vertical line at X = 24
(bottom left panel) and X = 40 (bottom right panel) for
16% of “extended” impurities (marked by circles) which
influence the positions of EB

i levels of neighboring sites
and the local atomic levels V imp

i , changing them from
homogeneous value (EB

i − 2µ, V imp
i ) = (0.58, 0.0)t to

(0.0,−0.29)t at the impurity, (0.29,−0.145)t at its near-
est neighbor site, (0.425,−0.0775)t and (0.5,−0.04)t at
still further sites. t′ = 0t and the total concentration of
carriers ntot = 1.3.
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results presented in Figs. 1 and 2 were obtained for a
ground state (T = 0 K).

Figure 1 presents the results for “extended” out-of-
-plane impurities which modify position of boson level
energy EB

i at a central and few neighboring sites of the
homogeneous non-superconducting system in a way that
supports superconductivity — that is by pushing EB

i

closer to the Fermi energy µ. Figure 2 shows the effect of
the “extended” impurities, which also introduce the po-
tential scattering V imp

i in the superconducting fermion
subsystem. We assume that if impurity modifies the EB

i

value by a δ for an electron pair, then modification for
an electron equals to δ/2 [19].

It is interesting to note that many of features of the
two-component model are not sensitive to the symme-
try of the order parameter. In Figs. 1 and 2, which are
obtained for s-wave superconductor the characteristics
are qualitatively and even quantitatively the same as for
d-wave one [17]. These are shapes of correlation function
Cf,h for the position of the impurity and the value of the
gap and the anti-correlation between values of the gap
and height of coherence peaks. They both are close to
those seen in experiment (0.3 ∼ 0.4) [9]. The homogene-
ity of the local density of states at low bias is again a
feature of the boson-fermion model observed for s- and
d-wave symmetry and also visible in experimental data
[4, 5, 9]. Of course the shape of the LDOS is different as
it depends on symmetry.

The main assumption of the model necessary to explain
many puzzling experimental data is connected with the
mechanism leading to the required changes of the boson-
-fermion model. The calculations similar to those of Alt-
man and Auerbach [26] with oxygen defects taken into
account would clarify the issue and make the approach
selfcontained.

4. Summary and conclusions

We have studied several possible sources of disorder
within the boson-fermion model and shown that the ob-
served STS data could be explained within a reasonable
assumption that impurities change the position of bo-
son energy levels EB

i moving them towards the Fermi
level. In the more realistic case we took into account
fluctuations of the atomic levels V imp. These types of
disorder provide natural explanation to a number of ob-
servations on HTS. In particular one explains: the ob-
served nanoscale inhomogeneity of the superconducting
gaps, homogeneity of LDOS at low and very high en-
ergies, positive correlation between position of dopant
atoms and spectral gap and anti-correlation between val-
ues of the gap and height of coherence peaks. The two-
-component model is of importance to study two chan-
nel superfluids in optical lattices [27], where both s- and
d-wave symmetry spin singlet condensates can easily be
obtained. Thus they give the opportunity to check the
present ideas and results to much higher accuracy than
can be obtained in HTS.
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