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A simple effective model for a description of magnetically ordered insulators is analysed. The tight binding
Hamiltonian consists of the effective on-site interaction (U) and intersite magnetic exchange interactions (Jz,
Jxy) between nearest neighbours. The phase diagrams of this model have been determined within the variational
approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field
approximation. We show that, depending on the values of interaction parameters and the electron concentration,
the system can exhibit not only homogeneous phases: (anti-)ferromagnetic (Fα) and nonordered (NO), but also
phase separated states (PSα: Fα–NO).
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1. Introduction

The extended Hubbard model with anisotropic spin
exchange interactions [1–5] is a conceptually simple phe-
nomenological model for studying correlations and for a
description of magnetism and other types of electron or-
derings in narrow band systems with easy-plane or easy-
-axis magnetic anisotropy.

In this report we will focus on the zero-band width
limit of the extended Hubbard model with magnetic
interactions for the case of arbitrary electron density
0 < n < 2. We consider the U–Jz Hamiltonian of the
following form:

Ĥ = U
∑

i

n̂i↑n̂i↓ − 2Jz
∑

〈i,j〉
ŝz

i ŝ
z
j − µ

∑

i

n̂i , (1)

where U is the on-site density interaction, Jz is z-
-component of the intersite magnetic exchange interac-
tion,

∑
〈i,j〉 restricts the summation to nearest neigh-

bours. ĉ+
iσ denotes the creation operator of an electron

with spin σ at the site i, n̂i =
∑

σ n̂iσ, n̂iσ = ĉ+
iσ ĉiσ and

ŝz
i = 1

2 (n̂i↑ − n̂i↓). The chemical potential µ depending
on the concentration of electrons is calculated from

n =
1
N

∑

i

〈n̂i〉 , (2)

with 0 ≤ n ≤ 2 and N is the total number of lattice sites.
The model (1) can be treated as an effective model

of magnetically ordered insulators. The interactions U
and Jz will be assumed to include all the possible contri-
butions and renormalizations like those coming from the

∗ corresponding author; e-mail: kakonrad@amu.edu.pl

strong electron–phonon coupling or from the coupling be-
tween electrons and other electronic subsystems in solid
or chemical complexes. In such a general case arbitrary
values and signs of U are important to consider. We re-
strict ourselves to the case of positive Jz > 0, because of
the symmetry between ferromagnetic (Jz > 0) and anti-
ferromagnetic (Jz < 0) case for lattice consisting of two
interpenetrating sublattices such as for example sc or bcc
lattices.

We have performed extensive study of the phase dia-
gram of the model (1) for arbitrary n and µ [6, 7]. In the
analysis we have adopted a variational approach (VA)
which treats the on-site interaction U exactly and the
intersite interaction Jz within the mean-field approxi-
mation (MFA). We restrict ourselves to the case of the
positive Jz, as it was mentioned above.

Let us point out that in the MFA, which does
not take into account collective excitations, one ob-
tains the same results for the U–Jz model and the
U–Jxy model, where the term 2Jz

∑
ŝz

i ŝ
z
j is replaced

with Jxy
∑

(ŝ+
i ŝ−j + ŝ+

j ŝ−i ), describing interactions be-
tween xy-components of spins at neighbouring sites,
ŝ+

i = ĉ+
i↑ĉi↓ = (ŝ−i )+. In both cases the self-consistent

equations have the same form, only the replacement
Jz → Jxy is needed and a magnetization along the z-axis
becomes a magnetization in the xy-plane [6].

For the model (1) only the ground state phase dia-
gram as a function of µ [8] and special cases of half-filling
(n = 1) [9] and U →∞ [10] have been investigated till
now.

Within the VA the intersite interactions are decoupled
within the MFA, which allows us to find a free energy
per site f(n). The condition (2) for the electron con-
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centration and a minimization of f(n) with respect to
the magnetic-order parameter lead to a set of two self-
-consistent equations (for homogeneous phases), which
are solved numerically. The order parameter is defined
as mα = (1/2)(mα

A + mα
B), where mα

γ = 2
N

∑
i∈γ〈ŝα

i 〉 is
the average magnetization in a sublattice γ = A,B in the
α = z, xy direction (sxy

i corresponds to s+
i here). If mα

is non-zero the ferromagnetic phase (Fα) is a solution,
otherwise the non-ordered phase (NO) occurs.

Phase separation (PS) is a state in which two domains
with different electron concentration exist in the system
(coexistence of two homogeneous phases). The free ener-
gies of the PS states are calculated from the expression

fPS(n+, n−) = mf+(n+) + (1−m)f−(n−) , (3)
where f±(n±) are values of a free energy at n± corre-
sponding to the lowest energy homogeneous solutions and
m = n−n−

n+−n−
is a fraction of the system with a charge den-

sity n+. We find numerically the minimum of fPS with
respect to n+ and n−.

In the model considered only PSα state (i.e. a coexis-
tence of Fα and NO phases) can occur.

In the paper we have used the following conven-
tion. A second (first) order transition is a transition
between homogeneous phases with a (dis-)continuous
change of the order parameter at the transition temper-
ature. A transition between homogeneous phase and PS
state is symbolically named as a “third order” transition.
During this transition a size of one domain in the PS state
decreases continuously to zero at the transition temper-
ature.

Second order transitions are denoted by solid lines on
phase diagrams, dotted curves denote first order transi-
tions and dashed lines correspond to the “third order”
transitions. We also introduce the following denotation:
Jα

0 = z1J
α for α = z, xy, where z1 is the number of near-

est neighbours.
The obtained phase diagrams are symmetric with re-

spect to half-filling because of the particle–hole symmetry
of the Hamiltonian (1), so the diagrams will be presented
only in the range 0 ≤ n ≤ 1.

2. Results and discussion

2.1. The ground state

In the ground state the energies of homogeneous
phases have the form: for NO: ENO = (1/2)Un
and for Fα: EF = −(1/2)Jα

0 n2 if n ≤ 1 and
EF = U(n− 1)− (1/2)Jα

0 (2− n)2 if n ≥ 1. Com-
paring the energies we obtain diagram shown in Fig. 1.
At U = −Jα

0 (1− |n− 1|) the first order transition
Fα–NO takes place in the system. This transition is
associated with a discontinuous disappearance of the
magnetization.

The first derivative of the chemical potential
∂µ/∂n = ∂2E/∂n2 for U/Jα

0 > −1 in the lowest en-
ergy phases is negative which implies that homogeneous
phases are not stable (except n = 1).

Fig. 1. Ground state phase diagrams as a function of
n without consideration of PS states. The dotted line
denotes discontinuous transition.

2.2. Finite temperatures

Finite temperature phase diagrams taking into account
only homogeneous phases and plotted as a function of
U/Jα

0 for chosen n are shown in Fig. 2a. The tricriti-
cal point T1, which is connected with a change of tran-
sition order, for n = 1 is located at kBT/Jα

0 = 1/3 and
U/Jα

0 = −2/3 ln 2 [9].

Fig. 2. Phase diagrams (a) kBT/Jα vs. U/Jα
0 for fixed

n and (b) kBT/Jα
0 vs. n for fixed U/Jα

0 without the
consideration of PS states. Dotted and solid lines denote
first and second order transitions, respectively.

The range of the occurrence of Fα phase is reduced
with decreasing n. For n > 0.67 and any U/Jα

0 > −1
we observe only one transition Fα–NO with increas-
ing temperature. In the range 0.67 < n ≤ 1 the U/Jα

0
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coordinate of the T1-point remains constant, so for
U/Jα

0 < −2/3 ln 2 the Fα–NO transition is discontinuous.
However, for n < 0.67 in some range of U/Jα

0 there can
appear a sequence of two transitions: NO–Fα–NO.

In Fig. 2b there are shown dependences of the tran-
sition temperature Fα–NO as a function of n for chosen
values of U/Jα

0 . The range of Fα stability is reduced with
decrease of U/Jα

0 . For U/Jα
0 > 0 and any n we observe

only one second order transition Fα–NO with increas-
ing temperature. There exist ranges of n and U/Jα

0 < 0,
where the sequence of transitions: NO–Fα–NO is present.

Fig. 3. Phase diagrams kBT/Jα
0 vs. n with the

consideration of PS states for U/Jα
0 = 1 (a) and

U/Jα
0 = 10 (b). Solid and dashed lines indicate second

order and “third order” boundaries, respectively.

At sufficiently low temperatures homogeneous phases
are not states with the lowest free energy and there PS
state can occur. On the phase diagrams, where we con-
sidered the possibility of appearance of the PS states,
there is a second order line at high temperatures, sep-
arating Fα and NO phases. A “third order” transition
takes place at lower temperatures, leading to a PS into
Fα and NO phases. The critical point for the phase sep-

aration (denoted as T2, a tricritical point) lies on the
second order line Fα–NO. Phase diagrams for U/Jα

0 = 1
and U/Jα

0 = 10 are shown in Fig. 3.
In the ranges of PS stability the homogeneous

phases can be metastable (if ∂µ/∂n > 0) or unstable (if
∂µ/∂n < 0). We leave deeper analyses of meta- and un-
stable states to future publications.

3. Final remarks

We considered a simple model for magnetically ordered
insulators. It was shown that at the sufficiently low tem-
peratures homogeneous phases do not exist and the states
with phase separation are states with the lowest free en-
ergy. On phase diagrams we also observe the tricritical
points, which are associated with a change of transition
order (T1-point, Fig. 2) or are located in the place where
the second order line connects with “third order” lines
(T2-point, Fig. 3).

Let us stress that the knowledge of the zero-band width
limit can be used as starting point for a perturbation ex-
pansion in powers of the hopping and as an important
test for various approximate approaches (like dynami-
cal MFA) analyzing the corresponding finite band width
models.
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