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We argue that three gaps observed in underdoped cuprates can be attributed to the formation of an-
tiferromagnetic spin polarons and bipolarons. Within the spin polaron scenario the antinodal pseudogap at
he high energy scale originates from the change of the Fermi surface topology, induced by antiferromagnetic
correlations. That change gives rise to the diminishing of the spectral weight at the antinodal region near the
Brillouin zone boundary. We demonstrate that effect by analyzing effective models of doped antiferromagnets.
The second type of pseudogap appearing at the intermediate energy scale originates from the phenomena which
are precursory to superconductivity and predominantly concern the portion of the Fermi surface near the nodal
region. In order to analyze the latter phenomenon we use the negative U Hubbard model, in which many
details typical to spin polaron physics are neglected, but which contains the essential ingredient of it, that is
the strong short range attraction. The lowest energy scale is related to the true superconducting gap which
develops with doping, although both types of pseudogap diminish with doping. This behavior can be explained
by the fact that the spin polaron band is empty in the undoped system and therefore the formation of the
superconducting state in the system is forbidden. Due to a pedagogical character of this report, we present in the
introduction a short overview of mostly recent experimental results which are related to the gap-pseudogap physics.

PACS numbers: 74.20.Mn, 74.72.Kf

1. Introduction

Many data sets obtained by means of spectroscopic and
transport measurements indicate that high Tc supercon-
ductors are extremely unconventional systems in compar-
ison to standard low temperature superconductors. The
nonstandard behavior manifests itself both in the normal
and in the superconducting state of those materials. It
seems that many aspects of that unconventional physics
can be attributed to the formation of gaps in spectral
densities.

In undoped systems, the spectral weight measured
by means of angle resolved photoemission spectroscopy
(ARPES) is lacking in the antinodal region [1, 2] which
may be attributed to the change of the Fermi surface
topology induced by antiferromagnetic correlations. In
the next paragraph we will argue that this kind of physics
may also influence the behavior of strongly underdoped
cuprates. The tendency towards charge and spin mod-
ulations in the form of stripes may modify the spectra
[3] which look in the presence of stripe order more con-
ventional and do not change so much with the doping
reduction. This seems to be the case of lanthanum based
cuprates [4].

In underdoped systems, in the phase diagram region
above Tc, but at temperatures low enough, a second type
of gap-like features has been identified from the results

of various measurements. The existence of those features
can be naturally interpreted in terms of uncondensed pre-
formed pairs. The term pseudogap has been coined to
describe this kind of physics. The presence of pseudogap
has been established through the measurements of the
nuclear magnetic resonance (NMR) [5], the scanning tun-
neling spectroscopy [6–9], the analysis of the electronic
Raman scattering [10–12], through time-resolved optical
spectroscopy [13–18], and through the ARPES [19–25].
The observed strong Nernst effect in cuprates has been
also attributed to it [26–28]. Early measurements of the
89Y nuclear magnetic resonance (Knight) shift in yttrium
based cuprates demonstrated the existence of spin gap
above TC [5]. The temperature at which this effect was
observed grew with underdoping. The scanning tunnel-
ing spectroscopy allowed directly visualize the existence
of a pseudogap in the high-temperature density of states
measured for bismuth based compounds and other ma-
terials [29]. As the temperature is raised from T < Tc

the superconducting gap remains constant and smoothly
evolves into a pseudogap across Tc. Coherence peaks are
abruptly reduced at Tc, giving rise to a generic pseudo-
gap spectrum. Above Tc, the pseudogap is gradually fill-
ing up and remains essentially constant, with a tendency
to increase at higher temperature before vanishing at a
crossover temperature known as T ∗. Also some ARPES
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measuremets seem to provide an evidence for the direct
relation between the pseudogap and pairing [25]. In the
underdoped compounds, instead of a complete Fermi sur-
face above Tc, only disconnected Fermi arcs appear, sepa-
rated by regions which still exhibit an energy gap. It has
been suggested that in the pseudogap phase, the energy-
-momentum dispersion of electronic excitations near the
Fermi energy behaves like the dispersion of a normal
metal on the Fermi arcs and like that of a superconductor
in the gaped regions.

A different set of experimental results seem to indicate
that the pseudogap physics is due to some competing
order. For example, recent results of electron Raman
scattering indicate that these two gap-like energy scales
observed in underdoped cuprates are associated with
quite different excitation (quasiparticle) dynamics [30],
which means that they are of different origin. Similar
conclusions have been drawn from infrared ellipsometry
measurements of the c-axis conductivity of underdoped
RBa2Cu3O7−δ (R = Y, Nd, and La) single crystals [31].
A separate study of the in-plane magnetic penetration
depth λab in optimally doped (BiPb)2(SrLa)2CuO6+δ

which was performed by means of muon-spin rotation
(µSR) gives rise to similar conclusions [32]. The mea-
surement results are inconsistent with a simple model
of a d-wave order parameter and a uniform quasipar-
ticle weight around the Fermi surface. It is demon-
strated that the data are well described by assuming
the angular gap symmetry obtained in earlier ARPES
experiments [33], which suggest that the superconduct-
ing gap in the optimally doped (BiPb)2(SrLa)2CuO6+δ

exists only in segments of the Fermi surface near the
nodes. Thus, it is concluded that remaining parts of the
Fermi surface, which are strongly affected by the pseu-
dogap state, do not contribute significantly to the super-
conducting condensate. Moreover, the polarized neutron
diffraction has been recently used to demonstrate that for
the model superconductor HgBa2CuO4+δ, a characteris-
tic temperature marks the onset of an unusual magnetic
order [34]. These results are consistent with a variant of
previously proposed current-loop order and of circulating
currents which induce orbital moments. Also the polar-
ized beam neutron-scattering measurements on a highly
perfect crystal of YBa2Cu3O6.6 have shown a distinct
magnetic transition to a different phase with an onset at
about 235 K, the temperature expected for the pseudogap
transition [35]. These data support the scenario in which
the superconducting and pseudogap state are two dis-
tinct and competing phenomena. Furthermore, through
a combined scanning tunneling microscopy and ARPES
study, the observation of two distinct gaps (a small and
a large gap) has been reported. Those gaps coexist both
in real space and in the antinodal region of momentum
space, below the superconducting transition temperature
of Bi2Sr2−xLaxCuO6+δ [36]. It has been shown that the
small gap is associated with superconductivity. The large
gap persists above Tc, and seems to be linked to the ob-
served charge ordering. Moreover, a strong correlation

between the large and small gaps has been found sug-
gesting that they are affected by similar physical pro-
cesses. On the other hand, some recent ARPES measure-
ments point out at a different origin of the pseudogap and
the superconducting gap [37]. The doping and temper-
ature dependences of the pseudogap and superconduct-
ing gap have been investigated in the single-layer cuprate
La2−xSrxCuO4 by that technique. The results clearly ex-
hibit two distinct energy and temperature scales, namely,
the gap around (π, 0) of large magnitude and the differ-
ent gap around the node characterized by the d-wave or-
der parameter. In comparison with bismuth compounds
having higher Tc’s, the nodal gap is smaller, while the
antinodal gap and the temperature when it is formed are
similar. This result suggests that the antinodal gap and
the crossover temperature are approximately material-
-independent properties of a single CuO2 plane, in con-
trast to the material-dependent nodal gap, representing
the pairing strength.

Contrary to the scenario of circulating currents, the
results of recent µSR measurements [38] seem to indi-
cate that dilute impurity phases are the source of the un-
usual magnetic orders at least in the case of YBa2Cu3Oy.
Furthermore, the lack of evidence for orbital-current ef-
fects in the results of the 89Y NMR measurement made
for the high-temperature Y2Ba4Cu7O15−δ superconduc-
tor has been recently reported [39]. Those findings do
not exclude the generation of such phases in cuprates in
general, but suggest that they do not have a universal
character.

Summarizing this short overview of experiments re-
garding the pseudogap physics and their interpretations,
it is tempting to notice that they provide contradicting
messages. It seems that some of those contradictions can
be attributed to the tendency to derive a simple phys-
ical picture and to provide arguments denying alterna-
tive scenarios suggested by opponents. In our opinion,
due to complexity of cuprates in some cases seemingly
contradicting scenarios might be merged into one. The
examples are the pictures of preformed pairs and of circu-
lating currents. As we have shown on the basis of the t–J
model the formation of bound two hole states (preformed
pairs) is accompanied by the existence of current–current
correlation functions forming the pattern of circulating
currents [40]. This suggests that the seemingly compet-
ing phases may be just the manifestation of pair forma-
tion. On the other hand, not all the properties observed
in cuprates are universal for all classes of these materi-
als, which increases the difficulty in finding a mechanism
driving the superconductivity.

In our opinion, there are three basic phenomena which
give rise to gap-pseudogap physics: (i) AF correlations
which induce the change of the Fermi surface topology
and the depletion of charge carrier density, (ii) formation
of uncondensed bound two-hole states in an effectively
weakly filled band in the presence of short range attrac-
tive interaction which originates with spin fluctuations,
and (iii) the true superconducting gap. In the follow-
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ing sections we will outline some elements of the theories
underlying those three complementary mechanisms.

2. Origin of the large antinodal pseudogap

In this section we demonstrate that even in the pres-
ence of only short range antiferromagnetic correlations
the Fermi surface takes the form of four oval-like shapes
existing at the borders of hole pockets. Due to momen-
tum dependence of the spectral density only four cen-
trally located arcs are visible. In a previous work we
have demonstrated a similar effect in the presence of
long range antiferromagnetic order [41]. We have pre-
sented there a theory for spin-polaron-like quasiparticles.
The basic idea behind this calculation was that a hole in
an antiferromagnetically ordered spin background is self-
-trapped. This leads to a hierarchy of localized states
which may also realize different irreducible representa-
tions of C4v. Since the Heisenberg exchange and the
hopping terms have matrix elements between such self-
-trapped states on neighboring sites, a linear combination
of atomic orbitals (LCAO) like description emerges where
the role of the atomic or Wannier functions is played by
the levels of the self-trapped hole. This leads to a multi-
band structure for the doped holes with the lowest of
those being the familiar quasiparticle band observed in
the insulating compounds and discussed extensively in
the literature. In the mentioned work we took the point
of view that the simplest description for the underdoped
compounds is holes being filled into this quasiparticle
band. The fact that these self-trapped states extend over
several unit cells in real space necessarily implies that
they have an ARPES form factor which varies within the
first Brillouin zone. In addition, the strong variation of
the photoemission intensity of the quasiparticle band as
a function of k is induced, which explains the remnant
Fermi surface and the Fermi arcs seen in ARPES. More-
over, the large antinodal pseudogap becomes a triviality
within this picture. One of the higher bands of the ef-
fective LCAO Hamiltonian may have been observed in
ARPES in the insulator Ca2CuO2Cl2 and optical transi-
tions between the resulting bands may explain the mid-
-infrared band in optical spectroscopy. There are proba-
bly complications due to lattice polaron effects but these
have been neglected although the simplicity of the calcu-
lations, which never need matrices bigger than 10 × 10,
would certainly allow one to treat such effects as well.

Now, we will demonstrate that similar effects can be
present in systems which are paramagnetic but in which
short range AF correlations exist. In order to tackle the
issue of the Fermi surface topology under such circum-
stances, in this part of the paper, we analyze the Hubbard
model within an approach based on the decomposition of
the square lattice into AF sublattices in which the mag-
netization vanishes. The approach is based on the in-
troduction of an overcomplete set of physically relevant
operators, at the price of an additional constraint which
should be obeyed by them. We treat the Hamiltonian

and the constraint represented in terms of those opera-
tors within the linear approximation. We also postulate
that at the mean field level the sublattice magnetization
vanishes in accordance with the aim to make considered
scheme to be applicable to systems with short range AF
correlations. We start with the definition of the represen-
tation for the physical space in terms of some new opera-
tors. If i ∈ A, where i and A refer to a site and to one of
sublattices respectively, we postulate the following cor-
respondence: |0〉 → h†i |0〉, c†i,↑|0〉 → |0〉, c†i,↓|0〉 → b†i |0〉,
c†i,↓c

†
i,↑|0〉 → d†i |0〉. If j ∈ B where j and B refer to a

site and to the second sublattice respectively, we have
|0〉 → h†j |0〉, c†j,↑|0〉 → b†j |0〉, c†j,↑c

†
j,↓|0〉 → d†j |0〉. The

physical subspace, from which unphysical states have
been removed, can be defined by the following constraint:

h†mhm + b†mbm + d†mdm = 0, 1 , (1)
or

h†mhm + d†mdm + b†mbm

− (h†mhm + d†mdm + b†mbm)2 = 0 , (2)
which should be obeyed for arbitrary m. Since the left-
-hand side of (2) can be represented in terms of quartic
terms only, the constraint limiting the Hilbert space reads

−2h†mhmd†mdm − 2h†mhmb†mbm

− 2d†mdmb†mbm − b†mb†mbmbm = 0 , (3)
and can be neglected if we confine the analysis to the
linear approximation.

The following representation of electron operators is
exact inside the physical space. If i ∈ A:

c†i,↑ = hi(1− n̂d,i)(1− n̂b,i)− d†i bi, (4)

c†i,↓ = hib
†
i + d†i (1− n̂h,i)(1− n̂b,i) , (5)

where n̂d,m = d†mdm etc. For j ∈ B we obtain the sym-
metric representation which allows us to represent the
Hamiltonian in a way that does not discriminate between
sublattices

c†j,↑ = hjb
†
j + d†j(1− n̂h,j)(1− n̂b,j), (6)

c†j,↓ = hj(1− n̂d,j)(1− n̂b,j)− d†jbj . (7)

It is clear that, within the linear approximation ap-
plied to hopping terms of the Hubbard Hamiltonian, only
terms containing single operators representing hole or
double occupancy creation or annihilation will be rele-
vant in the last four formulae.

Quite generally we can write for the electron number
operator at a given site, m:

c†m,↑cm,↑ + c†m,↓cm,↓ = 1− n̂h,m + n̂d,m. (8)
Furthermore, we obtain for the magnetization operator
at sites i belonging to the sublattice A:

m̂i,z =
1
2
− 1

2
n̂h,i − 1

2
n̂d,i − n̂b,i, (9)

and for the magnetization operator at sites j belonging
to the sublattice B:
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m̂j,z = −1
2

+
1
2
n̂h,j +

1
2
n̂d,j + n̂b,j . (10)

By using the above statements we deduce that within
the linear approximation the Hamiltonian including a
term multiplied by a global Lagrange multiplier λ and
related to the condition of vanishing sublattice magneti-
zation reads

H = −t
∑

l,δ=±x̂,±ŷ

hl+δdl

− t′
∑

l,δ=±x̂±ŷ,±x̂∓ŷ

(
hl+δh

†
l + d†l+δdl

)

− t′′
∑

l,δ=±2x̂,±2ŷ

(
hl+δh

†
l + d†l+δdl

)

−µ
∑

l

(
hlh

†
l + d†l dl

)
+ U

∑

l

d†l dl

+λ
∑

l

(
1
2
hlh

†
l −

1
2
d†l dl − b†l bl

)
. (11)

Self-consistent conditions which determine parameters λ
and µ for a given temperature T and electron density
n = 1− δ, where δ is hole filling, are〈 ∑

l

(
1
2
hlh

†
l −

1
2
d†l dl − b†l bl

)〉
= 0 , (12)

〈∑l(hlh
†
l + d†l dl)〉
N

= n . (13)

The first condition refers to the vanishing of the sub-
lattice magnetization in the paramagnetic state while
〈. . .〉 denotes the average over the macrocanonical en-
semble. After introducing a two-component operator
Ψm = (h†m, dm) which allows us to simplify the notation
we obtain a Hamiltonian which can be easily diagonal-
ized. In order to evaluate the Green function and the
spectral function within the linear approximation we use
the following simplified representation for the operators
creating electrons:

i ∈ A : ci,↑ = h†i , (14)

j ∈ B : cj,↑ = dj , (15)

i ∈ A : ci,↓ = di , (16)

j ∈ B : cj,↓ = h†j . (17)
The rest of calculation details will be presented else-
where. In the numerical evaluation of the derived formu-
lae we have used the following parameters: t = 0.35 eV,
t′ = 0.12 eV, t′′ = 0.08 eV and U = 12t (4.2 eV), , while
in the plots we have applied Lorentzians with the broad-
ening parameter 0.05t. In Fig. 1 the spectral function
evaluated for the Fermi energy corresponding to the hole
doping level 10% has been depicted. Bright colours rep-
resent regions with high values of spectral intensity. Such
regions form four arcs at the border of hole pockets. In
agreement with ARPES measurements the arcs are lo-
cated in parts of the pocket edges which are nearest to
the zone center. Since the calculation presented in this
section concerns a system which is paramagnetic, the re-

sult proves that even under such circumstances the Fermi
surface visible in ARPES experiments may take the form
of disconnected arcs.

Fig. 1. Intensity plot of the spectral function at the
Fermi energy in the first Brillouin zone for the doping
level 10%.

3. Origin of the small nodal pseudogap

In this section we discuss the impact which the exis-
tence of preformed pairs has on the spectral properties of
the system. Within the assumed scenario, doping of an
antiferromagnet is equivalent at low levels of it to filling
a band formed by spin polarons. Since there exists effec-
tive attraction between particles, the formation of bound
states below the two-particle continuum induces pseu-
dogap phenomena in a weakly doped low dimensional
system for which the superconducting transition is not
favorable. We will demonstrate below that bound states
cease to exist when the filling level increases. In our
opinion this kind of behavior determines the shape of the
“phase” diagram for the pseudogap physics in cuprates.
There exist some additional data which confirm our sce-
nario, and which have not been mentioned in the intro-
duction. We will discuss them shortly here. There exists
much evidence coming from the research on optical con-
ductivity [42, 43] that in the low doping range the carrier
density is proportional to the doped-hole concentration.
The measurements of the penetration depth performed
by means of the µSR technique demonstrated the pro-
portionality between the hole density and the superfluid
density [44]. This confirmed an earlier suggestion that in
cuprates the scenario of the Bose–Einstein condensation
in a low dimensional system with the low density of car-
riers may be realized [45, 46]. Such an interpretation of
µSR data is consistent with assumption that the phase
transition belongs to the n = 2, X–Y model universality
class. It means that the Tc is controlled by the phase
stifness (ρs), not by the magnitude of the order parame-
ter as in conventional BCS superconductors [47]. In 2D
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the proportionality between Tc and the phase stiffness
is coded in the Berezinskii–Kosterlitz–Thouless (BKT)
mechanism of phase transition [48], which is character-
ized by a universal jump of the phase stiffness.

We analyze the above described scenario for the pseu-
dogap induced by the formation of preformed pairs in
a weakly doped system in the framework of the two-
-dimensional negative-U Hubbard model. We draw the
attention of the reader to the fact that there is no direct
relation between the positive value of U which we used
before and the negative value od U which we use now.
The latter refers to some effective attraction between
spin polarons, while the former to the Coulomb energy.
Also the particle number n in negative-U Hubbard model
refers now to to the density of spin polarons which is the
same as hole number δ. The usage of similar nomencla-
ture has historical grounds. We treat this model as a
simple version of the lattice model with short range at-
traction. These two features, namely low filling and short
range effective attraction are most characteristic for the
above discussed spin polaron (SP) model of quasiparticles
and their interaction in weakly doped cuprates [49, 50].
On the other hand, the band structure and the symmetry
of possible paired states are different for negative-U Hub-
bard and SP models. Nevertheless, in the first attempt
we analyze the consequences of our pseudogap scenario
within a simplest model, and neglect some details charac-
teristic for cuprates, because the scheme suggested by us
seems to be more general. To be specific, we consider the
model on the square lattice, restrict the analysis to the
normal state and apply the T -matrix approach within a
simplest approximation [51, 52], according to which the
pair susceptibility χ(0)(q, iνn) is given by

χ(0)(q, iνn)

=
1

βN

∑
p,ωl

G(0)(p, iωl)G(0)(q − p, iνn − iωl) , (18)

where G(0)(p, iωl) represents the non-interacting (bare)
Green function. The formula (18) is related to the repre-
sentation of the T -matrix within the ladder approxima-
tion in terms of the bare Green functions,

T (q, iνn) =
−U

1 + Uχ(0)(q, iνn)
. (19)

The next approximation which we apply is to consider
only isolated poles of T (q, iνn) [53]:

T (q, T, µ, iνn) ≈
∑
m

R(m)(q, T, µ)

iνn − E
(m)
b (q, T, µ)

. (20)

E
(m)
b (q, T, µ) are solutions of the equation

1 + Uχ(0)(q, E
(m)
b (q, T, µ)) = 0 , (21)

which for T = 0 and just two particles determines the
pair energy. The summation over the label m in (20) is
restricted to bound states, energies of which lie below the
continuum of energies of two free particles,

E
(m)
b (q, T, µ) + 2µ < min

p∈1BZ
(tp + tq−p) , (22)

where tp is the single-particle energy dispersion. The
mean field critical temperature, which we will also evalu-
ate in order to sketch it on the diagram for the strength of
pseudogap effects can be found by solving another equa-
tion,

1 + Uχ(0)(0, 0) = 0 . (23)
Following an earlier work [53] we use the number of

doubly occupied sites nd as the measure of the pseudogap
strength. Within the isolated pole approximation (20) it
is given by

nd = − 1
N

∑
q

R(q, T, µ)
U2

nB(Eb (q, T, µ)) , (24)

where nB is the Bose–Einstein distribution. In Fig. 2 a
schematic phase diagram of pseudogap phenomena has
been depicted. The ratio 2nd/n, where n represents the
density of particles has been chosen as the measure of the
pseudogap strength. By definition, the lower and upper
limits of this parameter are given by 0 and 1, respectively.
It is visible at a first glance that the shape of the area
in which according to our analysis pseudogap phenomena
are strong, resembles the shape of the region on the phase
diagram of cuprates in which the Nernst effect is strong
[26–28].

Fig. 2. Schematic diagram for pseudogap phenomena
induced upon doping the system with strong short range
attraction. The dome bordered by the upper curve rep-
resents the region when the ratio 2nd/n substantially
differs from zero. The second (from top) curve rep-
resents the BCS critical temperature derived from the
Thouless criterion (23). The lowest curve schematizes
the temperature of the BKT transition applicable to
two-dimensional systems.

4. Discussion

The presented scenario based on the idea of filling the
spin polaron band which is empty in undoped systems,
seems at least qualitatively to explain several phenomena
which belong to the category of pseudogap effects. Also
the behavior of the superconducting gap which grows
with doping in underdoped cuprates is in agreement with
the spin-polaron scheme [49, 50]. This effect can be at-
tributed to the known fact that at low filling levels the
superfluid density strongly depends on the density. The
disappearance of the superconducting order parameter
in overdoped systems should be attributed, according to
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our scenario, to the vanishing of antiferromagnet fluctua-
tions, because the exchange of magnons by holes provides
glue for pairing. For doping levels at which such vanish-
ing takes place our approach being applicable to systems
with the substantial size of the antiferromagnetic cor-
relation length ceases to be valid. Nevertheless, our sce-
nario is even in that doping range consistent with experi-
mental observations showing more conventional behavior
and disappearance of superconductivity. Recently, it has
been announced that in multilayered heterogeneous ox-
ide structures it is possible to induce a triplet component
in a cuprate superconductor [54]. The proximity to the
stabilization of a superconducting state with a p-wave
component has been also predicted in the framework of
the spin polaron approach [55].

It is clear that lattice effects influence the behavior
of cuprates [56]. As it has been shown by the Zürich
group, the isotope effect is seen for both Tc and the super-
fluid density [57]. The interplay between spin polarons
— bipolarons and phonons needs to be analyzed more
thoroughfully. Nevertheless, it is clear already now that
the lattice effects profoundly influence the properties of
these systems.

In summary, the phenomenology of gaps observed in
cuprates seems to agree with the concept of spin po-
laron formation in doped antiferromagnets. The large
antinodal gap is the manifestation of the Fermi surface
topology change induced by antiferromagnetic fluctua-
tions. Some additional complications may bring about
the tendency toward charge ordering in the form of
stripes or even in the form of a checkerboard [58]. Such
a tendency is also seen in models based on the spin po-
laron approach. A more detailed analysis suggests that
the so-called checkerboard structure is an averaged over
directions form of one-dimensional charge modulations
in which preformed pairs participate [59]. The exper-
imentally observed tendency toward more conventional
shape of the Fermi surface in systems in which stripes
are formed also agrees with analyzes based on the spin
polaron idea. The nodal and smaller pseudogap is at-
tributed, within that scenario, to precursory effects to
pairing. Their appearance is induced by the fact that
spin polaron filling is relatively low in underdoped sys-
tems. With doping the systems become more conven-
tional because antiferromagnetic fluctuations weaken and
electron correlation effects become less important due to
higher average distance between electrons and due to dis-
appearance of the attraction mechanism for holes.
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