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Electromagnetic response of cuprate superconductors is studied within the model of kinetic energy driven
d-wave superconductivity by analyzing the Meissner effect. The kernel of the linear response function is found and
employed to calculate the magnetic field penetration depth and the superfluid density of cuprate superconductors
within the specular reflection model for a purely transverse vector potential. It is shown that the magnetic
field penetration depth and the superfluid density depend linearly on temperature, except for a strong deviation
from the linear characteristics at extremely low temperatures, which is attributed to nonlocal effects. The
zero-temperature superfluid density is found to decrease linearly with decreasing doping concentration in the
underdoped regime. The problem of gauge invariance in the theoretical description of the electromagnetic response
is addressed, and an approximation which does not violate local charge conservation is proposed.

PACS numbers: 74.25.Ha, 74.25.N–, 74.20.Mn

1. Introduction

The spectacular Meissner–Ochsenfeld effect in which
the external magnetic field is expelled from a supercon-
ducting (SC) sample is one of the most fundamental phe-
nomena observed in superconductors, and can be used to
infer about many fundamental features of the studied
system. Therefore the physics of superconductors at the
length scale of the penetration depth, i.e. the region at
the edge of the sample where the induced supercurrents
effectively screen the external magnetic field, has been
intensively studied by both theoretical and experimental
methods in high-Tc superconductivity research.

It is the linear low temperature dependence of the
magnetic field penetration depth λ(T ) which first pro-
vided a strong experimental support for nodes in the
SC order parameter of cuprate superconductors [1], then
confirmed by angle resolved photoemission spectroscopy
(ARPES) [2]. The linear temperature dependence of the
penetration depth observed in various SC cuprates [1, 3]
is characteristic of the d-wave SC energy gap and is at-
tributed to excitation of quasiparticles (QPs) out of the
condensate at the nodes of the order parameter. On the
other hand, the doping dependence of the electromag-
netic response in cuprate superconductors can be studied
in terms of the zero-temperature superfluid density. The
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superfluid density, which is proportional to the squared
amplitude of the coherent macroscopic wave function of
the SC charge carriers, can provide significant informa-
tion about the SC state. The zero-temperature superfluid
density in cuprate superconductors is found to decrease
linearly with decreasing doping [4], which in turn im-
plies a linear relation between the critical temperature
Tc and the superfluid density observed in underdoped
samples [5].

The value of the magnetic field penetration depth in
cuprate superconductors is much larger than the coher-
ence length regarded as a measure of the spatial extent
of a Cooper pair. Consequently, cuprate superconduc-
tors can be regarded as type-II superconductors and the
local, London-type electrodynamics should be applica-
ble, resulting in an exponential decay of the local mag-
netic field inside the sample [6, 7]. Nonlocal effects in
superconductors emerge when the electromagnetic field
varies significantly over the size of a Cooper pair. It has
been suggested [8] that nonlocal effects can also imply a
crossover in the low-temperature dependence of the pen-
etration depth even in the clean limit. This is because
the effective coherence length diverges at the nodes, and
so the locality condition based on the Ginzburg–Landau
ratio of the penetration depth and the coherence length
no longer holds [8].

The layered structure of cuprate superconductors gives
rise to strong anisotropy, and it is possible to observe
both the in-plane and the inter-plane Meissner effects.
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The former one is characterized by the ab-plane mag-
netic field penetration depth, whereas the latter one is
related to the magnetic field penetration in the c-axis di-
rection. Here we concentrate on the in-plane Meissner
effect based on the kinetic energy driven superconduc-
tivity [9, 10] and do not consider c-axis properties, which
can be discussed, e.g., by taking into account hopping be-
tween adjacent copper-oxides layers within the tunneling
Hamiltonian approach [11].

2. Model and method

It has been argued that the physics of the doped CuO2

plane [2, 12] can be described by the t–J model [13] on
a square lattice, which in the present case needs to be
extended by including the exponential Peierls factors

H = −t
∑

lη̂σ

e− i (e/~)A(l)·η̂C†lσCl+η̂σ + µ
∑

lσ

C†lσClσ

+J
∑

lη̂

Sl · Sl+η̂. (1)

Here η̂ = ±x̂,±ŷ, C†lσ (Clσ) is the electron creation (an-
nihilation) operator, Sl = (Sx

l , Sy
l , Sz

l ) are spin opera-
tors, µ is the chemical potential, and the Peierls fac-
tors account for the coupling of electrons to the ex-
ternal magnetic field represented by the vector poten-
tial A(r). The extended t–J Hamiltonian (1) is sub-
jected to an important local constraint

∑
σ C†lσClσ ≤ 1

in order to avoid the double occupancy. The strong
electron correlation manifests itself by this local con-
straint [12], which can be treated properly in analytical
calculations within the charge-spin separation fermion-
-spin theory [14], where the constrained electron oper-
ators are decoupled as Cl↑ = h†l↑S

−
l and Cl↓ = h†l↓S

+
l .

The spinful fermion operator hlσ = e− iΦlσhl represents
the charge degree of freedom together with some effects
of spin configuration rearrangements due to the presence
of the doped hole itself (charge carrier), while the spin
operator Sl represents the spin degree of freedom (spin).
Then the electron single occupancy local constraint is
satisfied automatically [14].

It is worth to emphasize that in general, due to renor-
malization related to the reduction of the energy scale,
the kinetic energy and the potential energy at the t–J
model level become mixed [15, 16]. Therefore the ob-
servation that the hopping energy defined for the t–J
model is lowered, does not mean that the kinetic energy
defined from the first principles is lowered. The kinetic
energy defined in the parent model is not identical with
the kinetic energy in the model derived from it by ap-
plying a unitary transformation as discussed in Ref. [15].
However, if the system manages somehow to simultane-
ously lower the hopping energy and the exchange energy
at the t–J model level, the decrease in the total and ki-
netic energies defined at the Hubbard model level is then
an obvious consequence [15]. The lowering of the latter
one in the Hubbard model in the superconducting state

contradicts experiments, indicating that a single band
model is not able to describe the excitations across the
gap properly. However, an effective model — such as the
t–J model — captures the essential physics of low-energy
excitations [15].

Although the external magnetic field usually represents
a large perturbation, it is cancelled over most of the vol-
ume of the sample by the induced field generated by the
supercurrents. Consequently, the net field acts only very
near the surface on a scale of the magnetic field pene-
tration depth and so it can be treated as a weak per-
turbation. The Meissner effect can be therefore success-
fully studied within the linear response approach [17, 18],
where the averaged value J of the microscopic screening
current is found as

Jµ(q, ω) = −
∑

ν

Kµν(q, ω)Aν(q, ω) . (2)

Here Kµν = K
(d)
µν + K

(p)
µν is the kernel of the response

function, and once known allows us to calculate quanti-
tative characteristics of the electromagnetic response.

The charge current operator, obtained e.g. as a func-
tional derivative of the Hamiltonian (1) with respect to
to the vector potential [19] includes a diamagnetic (d)
and a paramagnetic (p) component. Since the former
one is explicitly proportional to the vector potential, the
diamagnetic contribution to the kernel can be found from
Eq. (2) as [20]:

K(d)
µν (q) = −ZhF χe2t

2~2N

×
∑

k

δµν

(
1− ξ̄k

Ehk
tanh

βEhk

2

)
cos kµ ,

where χ is a spin correlation function, ZhF is the QP
coherence factor and Ehk =

√
ξ̄2
k + ∆̄hZ(k)2 is the QPs

spectrum [9, 10]. On the other hand, the paramagnetic
contribution can only be calculated approximately as it
involves evaluation of a retarded current–current correla-
tion function (polarization bubble). Here we will restrict
the discussion to evaluation — within the Matsubara for-
malism — of the polarization bubble with bare paramag-
netic current vertices γ, but dressed charge carrier Green
functions G as shown in Fig. 1. It is well known [21] that
employing this scenario we do not take into account lon-
gitudinal excitations properly, and this approach is valid

Fig. 1. Bare polarization bubble: solid lines represent
the charge carrier Green functions in the Nambu nota-
tion [14].
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for the vector potential in a purely transverse gauge only,
such as the Coulomb gauge. If we would like to keep the
theory gauge invariant, we would have to dress the po-
larization bubble in a way which maintains the general-
ized Ward identity [21], e.g., by adapting a ladder-type

approximation for the current vertex. Such dressing is
briefly discussed in Appendix at the end of the paper.

In the static limit (ω ≈ 0) the bare vertex paramag-
netic part of the response kernel can be found as [20]:

K(p)
µν (q, 0) = −

(
χetZhF

N~2

)2

e
i
2 (qµ−qν)

∑

k

sin
(
kµ +

qµ

2

)
sin

(
kν +

qν

2

)

×
{

1
Ehk + Ehk+q

[
1− ξ̄k+q ξ̄k + ∆̄hZ(k + q)∆̄hZ(k)

EhkEhk+q

]
[1− nF(Ehk)− nF(Ehk+q)]

+
1

Ehk − Ehk+q

[
1 +

ξ̄k+q ξ̄k + ∆̄hZ(k + q)∆̄hZ(k)
EhkEhk+q

]
[nF(Ehk+q)− nF(Ehk)]

}
, (3)

where nF is the Fermi function. Let us note that in
the long wavelength limit, when |q| → 0, the former
term in Eq. (3) vanishes, and the latter reduces to
−2(χetZhF /N~2)2

∑
k sin kµ sin kνnF(Ehk)[1−nF(Ehk)],

which is equal to zero in the zero-temperature limit.
Hence, in this case, the long wavelength Meissner effect
at T = 0 is determined by the diamagnetic part of the
kernel only.

3. Results and discussion

The reaction of the system to a weak electromag-
netic stimulus is entirely described by the linear response
kernel calculated within an assumed microscopic model.
Technically, we need to combine one of the Maxwell equa-
tions with the linear relation between the current and the
vector potential describing the response of the system,
and solve them together for the vector potential. This is
the step in which a particular gauge of the vector poten-
tial is set. We take into account the confined geometry
of the cuprates by employing the standard specular re-
flection model [22] with a two-dimensional geometry of
the SC plane, in the configuration with external mag-
netic field perpendicular to the ab plane. In the assumed
geometry the in-plane magnetic field penetration depth
can be found as [20]:

λ(T ) =
2
π

∫ ∞

0

dqx

µ0Kyy(qx, 0, 0) + q2
x

.

The zero-temperature value of the penetration depth
λ(0) ≈ 380.8 nm for δ = 0.15 and t/J = 2.5 (with a
reasonably estimative value of J/kB ≈ 1000 K) is in the
range λ(0) ≈ 156 ÷ 400 nm observed in different fami-
lies of cuprate superconductors [6]. Our theoretical re-
sult for ∆λ(T ) presented in Fig. 2 clearly shows linearity
in the temperature, except for extremely low tempera-
tures where a strong deviation from the linear charac-
teristics appears. This crossover from the linear tem-
perature dependence into the nonlinear one is observed
experimentally in nominally clean cuprate superconduc-
tors [3, 6, 23, 24]. Having calculated the penetration

depth we can easily find the superfluid density at zero
temperature (Fig. 3), and note that it decreases linearly
with decreasing doping level. This result also is a nat-
ural consequence of the linear doping dependence of the
SC transition temperature Tc ∝ δ found in the under-
doped regime within the framework of the kinetic energy
driven SC mechanism [9, 10]: the SC transition temper-
ature is set by the charge carrier doping concentration,
and then the density of the charge carriers directly deter-
mines the in-plane superfluid density in the underdoped
regime. The temperature dependence of superfluid den-
sity is presented in Fig. 4 and also stays in agreement
with experimental observations [4].

Fig. 2. Temperature dependence of magnetic field in-
-plane penetration depth ∆λ(T ) for the doping concen-
tration δ = 0.150 (solid), 0.149 (dashed), and 0.148
(dotted) with parameter t/J = 2.5. Inset: the experi-
mental result for YBa2Cu3O7−y (data taken from [3]).

The nonlinearity observed in the temperature depen-
dence of the penetration depth (Fig. 2) and the superfluid
density (Fig. 4) can be attributed to nonlocal effects,
which in the case of a pure d-wave cuprate supercon-
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Fig. 3. Doping dependence of the zero-temperature in-
-plane superfluid density in the underdoped regime with
t/J = 2.5 for the doping concentration δ = 0.072 (solid
line), δ = 0.069 (dashed line), and δ = 0.066 (dotted
line). Inset: the corresponding experimental results for
YBa2Cu3O7−y taken from Ref. [4].

Fig. 4. Temperature dependence of the in-plane super-
fluid density for the doping concentration δ = 0.072
(solid line), δ = 0.069 (dashed line), and δ = 0.066
(dotted line) with t/J = 2.5. Inset: the correspond-
ing experimental results for YBa2Cu3O7−y taken from
Ref. [4].

ductor may become significant in the electromagnetic re-
sponse [8]. In general, the relation between the supercur-
rent and the vector potential is nonlocal in the coordinate
space due to the finite size of charge carrier Cooper pairs,
which in the clean limit is of the order of the coherence
length ζ(k) = ~vF/π∆h(k) and is momentum dependent.
Here vF = ~−1∂ξk/∂k|kF is the charge carrier velocity at
the Fermi surface. Although the external magnetic field
decays exponentially on the scale of the magnetic field
in-plane penetration length λ(T ), nonlocal contributions
to measurable quantities are of the order of κ−2, where
κ = λ/ζ is known as the Ginzburg–Landau (GL) param-
eter. In the d-wave cuprate superconductors, the char-
acteristic feature is the existence of four nodal points in

the Brillouin zone, where the charge carrier gap function
vanishes and hence the coherence length ζ(k) diverges.
At extremely low temperatures the QPs selectively pop-
ulate the nodal regions, and the major contribution to
measurable quantities comes from these QPs. In these
conditions, the GL ratio is no longer large enough for the
system to belong to the class of type-II superconductors,
and the condition of the local limit is not fulfilled [8].
The system falls then into the extreme nonlocal limit,
and the nonlinear characteristics in the temperature de-
pendence of the penetration depth can be observed at
sufficiently low temperatures [6, 23]. However, with in-
creasing temperature, the QPs around the nodal regions
become excited out of the condensate, and the nonlocal
effect fades away. In this case, the momentum dependent
coherence length can be replaced approximately with the
isotropic one ζ0 = ~vF/π∆h. Then the GL parameter
κ0 ≈ λ(0)/ζ0 ≈ 180, and the condition for the local limit
is satisfied. This value of the GL parameter falls into
the range κ0 ≈ 150 ÷ 400 estimated experimentally for
various cuprate superconductors [6]. Consequently, the
cuprate superconductors at moderately low temperatures
turn out to be type-II superconductors, where nonlocal
effects are negligible and the electrodynamics is purely
local. In this local limit, the pure d-wave pairing state in
the kinetic energy driven SC mechanism [9, 10] gives the
magnetic field penetration depth ∆λ(T ) ∝ T [8].

4. Summary

In this paper we have discussed the electromagnetic re-
sponse of cuprate superconductors by analyzing the ex-
pulsion of the external magnetic field in the Meissner–
Ochsenfeld effect. Within the framework of kinetic en-
ergy driven d-wave superconductivity, following the lin-
ear response theory, and taking into account the two-
-dimensional geometry of the copper-oxide planes within
the specular reflection model, we have reproduced some
features of the electromagnetic response experiments on
cuprate superconductors, including the linear tempera-
ture characteristics of the in-plane penetration depth and
the superfluid density in the low temperature regime, and
their nonlinear temperature dependence at extremely low
temperatures. We have also found the doping evolution
of the zero temperature superfluid density, which turned
out to be linear for underdoped systems. In the paper,
we have also emphasized the limitations of the used ap-
proximations, especially with respect to the problem of
gauge invariance.
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Appendix: gauge-invariant polarization bubble

Gauge invariance is a direct consequence of local charge
conservation [18, 21], which mathematically is expressed
by the charge density-current continuity equation. In the
Green function formalism the continuity equation turns
into its Green function analogue called the generalized
Ward identity (GWI) [18, 21, 25, 26]. Since the local
charge conservation is a quite universal and fundamen-
tal principle, it should be inherent to any theory of the
Meissner–Ochsenfeld effect which is expected to be gauge
invariant. Here — within the formalism of kinetic en-
ergy driven superconductivity [9, 10] — we outline [20] a
method to dress the current vertex in a way, which does
not violate the GWI. Once this method is applied, the
bare polarization bubble (Fig. 1) can be replaced with its
dressed version presented in Fig. 5 and the resulting ker-
nel of the response function will provide correct results
for any gauge of the vector potential.

Fig. 5. Dressed polarization bubble: the solid lines
represent the charge carrier Green functions in the
Nambu notation.

It is well known that in order to obtain a dressed vertex
function, which does not violate the GWI, a ladder-type
approximation can be adapted [18, 21, 25]. The nature of
the pairing mechanism in kinetic energy driven supercon-
ductivity, which originates from the so-called spin bubble
[9, 10], suggests a ladder-like approximation of the form
presented in Fig. 6.

Fig. 6. Equation for the dressed vertex function em-
ploying the ladder-type approximation. The solid lines
represent the charge carrier Green functions in the
Nambu notation, and the dashed ones belong to the
spin-bubble dressing of the charge carriers [10, 14].

In order to prove that the approximation (6) for the
dressed vertex in fact implies a gauge invariant descrip-
tion of the Meissner effect, it is necessary and sufficient to
check whether it does not violate the GWI. The proof is

a three-step procedure [21]: first we check that the GWI
for the bare current vertex is satisfied with the mean-
-field charge carrier Green function [10, 14]. Then, in the
second step, the GWI is written with the dressed cur-
rent vertex satisfying the ladder-type vertex equation in
Fig. 6. Eventually, the GWI for the mean-field charge
carrier Green function is employed, along with the equa-
tion for the full (dressed) charge carrier Green function
including the spin-bubble self-energy. This yields the
GWI (and hence ensures gauge invariance) for the ladder-
-like dressed vertex and dressed Green function. Con-
sequently, the kernel of the response function with the
paramagnetic contribution calculated from the dressed
polarization bubble shown in Fig. 5 is gauge invariant.
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