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The spin-rotationally invariant SU(2) approach to the Hubbard model is extended to accommodate the
charge degrees of freedom. Both U(1) and SU(2) gauge transformation are used to factorize the charge and
spin contribution to the original electron operator in terms of the emergent gauge fields. It is shown that these
fields play a similar role as phonons in the BCS theory: they provide the “glue” for fermion pairing. By tracing
out gauge bosons the form of paired states is established and the role of antiferromagnetic correlations is explicated.
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1. Introduction

As a principal model describing the electronic corre-
lation in the system, the Hubbard model has been used
in many works to study the pairing instabilities which
as usual are given by the second-order effective interac-
tion with respect to the Coulomb interaction. In this
context the structure of the pairing interaction, the two-
-dimensional (2D) Hubbard model, has been recently
analyzed in [1–3], where the dynamical cluster Monte
Carlo approximation is applied to two-dimensional Hub-
bard model with nearest-neighbors hopping and on-site
Coulomb interaction. The Monte Carlo simulations have
been also employed to study the phase separation and
pairing in the doped two-dimensional Hubbard model [4].
Moreover, the charge-transfer nature of the cuprates
plays an essential role in the doped systems [5], so that
with discarding charge degrees of freedom an important
part of the physics may be lost. In the same spirit a
detour from the strict projection program was recently
proposed in a form of the “gossamer” superconductor [6],
recognizing the role of the double-occupancy charge con-
figurations. In the present paper we construct a SU(2)
spin-rotational and charge U(1) invariant theory using
the electron operator factorization [7, 8]. Furthermore,
we derive the low-energy fermionic action that rests on
the SU(2)-invariant character of the Hamiltonian and a
consistent scheme of coherent states within a functional-
-integral formulation. We show that U(1) and SU(2)
gauge fields (the collective high energy modes in the
SC system) take over the task which was carried out by
phonons in BCS superconductors and play the role of the
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“glue” that is responsible for the formation of the electron
pairs. In this sense the present work charts a route from
the microscopic Hubbard model on the square lattice to
an effective lower energy action that exhibits pairing po-
tential.

2. The model

Our starting point is the fermionic Hubbard Hamilto-
nian in the second-quantized form

H = −t
∑

〈rr′〉,α

[
c†α(r)cα(r′) + H.c.

]

+
∑

r

Un↑(r)n↓(r) . (1)

Here, 〈r, r′〉 runs over the nearest-neighbor (n.n.) sites,
t is the hopping amplitude, U stands for the Coulomb re-
pulsion, while the operator c†α(r) creates an electron with
spin α =↑ (≡ 1), ↓ (≡ 2) at the square lattice site r. Fur-
thermore, n(r) = n↑(r) + n↓(r) is the number operator,
where nα(r) = c†α(r)cα(r). Usually, working in the grand
canonical ensemble a term −µ

∑
r n(r) is added to H in

Eq. (1) with µ being the chemical potential. We treat
the problem of interacting fermions at finite temperature
in the standard path-integral formalism [9] using Grass-
mann variables for the Fermi fields, cα(rτ) depending on
the “imaginary time” 0 ≤ τ ≤ β ≡ 1/kBT (with T being
the temperature) that satisfy the antiperiodic condition
cα(rτ) = −cα(rτ + β), to write the path integral for the
statistical sum Z =

∫
[Dc̄Dc]e−S[c̄,c] with the fermionic

action

S[c̄, c] = SB[c̄, c] +
∫ β

0

dτH[c̄, c] , (2)

that contains the fermionic Berry term

(273)
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SB[c̄, c] =
∑
rα

∫ β

0

dτ c̄α(rτ)∂τ cα(rτ) . (3)

For the problem under study it is crucial to construct a
covariant formulation of the theory, which naturally pre-
serves the spin-rotational symmetry present in the Hub-
bard Hamiltonian. For this purpose, the density–density
product in Eq. (1) can be written, following Ref. [10], in
a spin-rotational invariant way

HU = U
∑

r

{
1
4
n2(rτ)− [Ω(rτ) · S(rτ)]2

}
, (4)

where Sa(rτ) = 1
2

∑
αα′ c

†
α(rτ)σ̂a

αα′cα′(rτ) denotes
the vector spin operator (a = x, y, z) with σ̂a be-
ing the Pauli matrices. The unit vector Ω(rτ) =
[sin ϑ(rτ) cos ϕ(rτ), sin ϑ(rτ) sin ϕ(rτ), cos ϑ(rτ)] writ-
ten in terms of polar angles labels varying in space-
-time spin-quantization axis. The spin-rotation invari-
ance is made explicit by performing the angular integra-
tion over Ω(rτ) at each site and time. By decoupling
spin- and charge-density terms in Eq. (4) using auxiliary
fields %(rτ) and iV (rτ), respectively, we write down the
partition function in the form

Z =
∫

[DΩ ]
∫

[DVD%]
∫

[Dc̄Dc] e−S[Ω,V,%,c̄,c] . (5)

The effective action reads as

S [Ω , V, %, c̄, c] =
∑

r

∫ β

0

dτ

[
%2(rτ)

U
+

V 2(rτ)
U

+iV (rτ)n(rτ) + 2%(rτ)Ω(rτ) · S(rτ)

]

+ SB[c̄, c] +
∫ β

0

dτHt[c̄, c] . (6)

3. Gauge transformations of fermions

We switch now from the particle-number representa-
tion to the conjugate phase representation of the elec-
tronic degrees of freedom. To this aim the second-
-quantized Hamiltonian of the model is translated to
the phase representation with the help of the topologi-
cally constrained path-integral formalism. To this end
we write the fluctuating “imaginary chemical potential”
iV (rτ) as a sum of a static V0(r) and periodic function
V (rτ) = V0(r) + Ṽ (rτ) using the Fourier series,

Ṽ (rτ) =
1
β

∞∑
n=1

[
Ṽ (rωn)e iωnτ + c.c.

]
(7)

with ωn = 2πn/β (n = 0,±1,±2) being the (Bose) Mat-
subara frequencies. Now, we introduce the U(1) phase
field φ(rτ) via the Faraday-type relation,

φ̇(rτ) ≡ ∂φ(rτ)
∂τ

= Ṽ (rτ) . (8)

Furthermore, by performing the local gauge transforma-
tion to the new fermionic variables fα(rτ),

[
cα(rτ)
c̄α(rτ)

]
=

[
z(rτ) 0

0 z̄(rτ)

][
fα(rτ)
f̄α(rτ)

]
, (9)

where the unimodular parameter |z(rτ)|2 = 1 satis-
fies z(rτ) = e iφ(rτ), we remove the imaginary term
i
∫ β

0
dτ Ṽ (rτ)n(rτ) for all the Fourier modes of the V (rτ)

field, except for the zero frequency. The subsequent
SU(2) transformation from fα(rτ) to hα(rτ) variables,[

f1(rτ)
f2(rτ)

]
=

[
ζ1(rτ) −ζ̄2(rτ)
ζ2(rτ) ζ̄1(rτ)

][
h1(rτ)
h2(rτ)

]
(10)

with the constraint |ζ1(rτ)|2 + |ζ2(rτ)|2 = 1 takes away
the rotational dependence on Ω(rτ) in the spin sector.
This is done by means of the Hopf map,

R(rτ)σ̂zR†(rτ) = σ̂ ·Ω(rτ) , (11)
where

R(rτ) =

[
ζ1(rτ) −ζ̄2(rτ)
ζ2(rτ) ζ̄1(rτ)

]
(12)

that is based on the enlargement from two-sphere S2 to
the three-sphere S3 ∼ SU(2). The unimodular constraint
can be resolved by using the parametrization

ζ1(rτ) = e− i/2[ϕ(rτ)+χ(rτ)] cos
(

ϑ(rτ)
2

)
,

ζ2(rτ) = e i/2[ϕ(rτ)−χ(rτ)] sin
(

ϑ(rτ)
2

)
, (13)

with the Euler angular variables ϕ(rτ), ϑ(rτ) and χ(rτ),
respectively. Here, the extra variable χ(rτ) represents
the U(1) gauge freedom of the theory as a consequence
of S2 → S3 mapping. One can summarize Eqs. (9) and
(10) by the single joint gauge transformation exhibiting
electron operator factorization

cα(rτ) =
∑

α′
z(rτ)Rαα′(rτ)hα′(rτ) , (14)

where R(rτ) = e− i σ̂zϕ(rτ)/2 e− i σ̂yϑ(rτ)/2 e− i σ̂zχ(rτ)/2 is a
unitary matrix which rotates the spin-quantization axis
at site r and time τ .

The expectation value of the static (zero-frequency)
part of the fluctuating potential V0(r) (in the charge sec-
tor) is calculated by the saddle-point method. As a result
we obtain

V0(r) = i
(

µ− U

2
nh

)
≡ i µ̄ , (15)

where µ̄ is the chemical potential with a Hartree shift
originating from the saddle-point value of the static
variable V0(r) with nh = nh↑ + nh↓ and nhα =
〈h̄α(rτ)hα(rτ)〉. Similarly in the magnetic sector, a
saddle-point evaluation of ρ(r) reproduces the conven-
tional Hartree–Fock equations for a commensurate anti-
ferromagnet

ρ(rτ) = (−1)r∆c , (16)
where ∆c = U〈Sz(rτ)〉 sets the magnitude for the Mott-
-charge gap ∆c ∼ U/2 for U/t À 1.

To summarize, the fermionic sector is governed by the
effective Hamiltonian
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HΩ,φ =
∑

r

∆c(−1)r[h̄↑(rτ)h↑(rτ)− h̄↓(rτ)h↓(rτ)]

−t
∑

〈rr′〉,αγ

z̄(rτ)z(r′τ)
[
R†(rτ)R(r′τ)

]
αγ

h̄α(rτ)

×hγ(r′τ)− µ̄
∑
rα

h̄α(rτ)hα(rτ) . (17)

The chief merit of the gauge transformation in Eq. (14) is
that we have managed to cast the Hubbard problem into
a system of h fermions submerged in the bath of strongly
fluctuating U(1) and SU(2) gauge potentials (minimally
coupled to fermions via hopping term) which mediate the
interactions.

4. Pairing interaction

Now we show that U(1) and SU(2) emergent gauge
fields (the collective high-energy modes in the Hubbard
system) take over the task which was carried out by
phonons in BCS superconductors. In a way similar to
phonons these gauge fields couple to the fermion density-
-type term via the amplitude t, see Eq. (17),

−t
∑

〈rr′〉,αγ

z̄(rτ)z(r′τ)
[
R†(rτ)R(r′τ)

]
αγ

× h̄α(rτ)hγ(r′τ) . (18)
Thus, in order to obtain an effective interaction among
fermions we have to integrate out all the bosonic
modes given by z̄(rτ), z(r′τ) and R†(rτ), R(r′τ) fields.
To explicitly evaluate the effective interaction between
fermions by tracing out the gauge degrees of freedom, we
resort to the cumulant expansion. To this end we write
the partition function as Z =

∫
[Dh̄Dh]e−S[h̄,h], where

the effective fermionic action is

Seff [h̄, h] = − ln
∫

[DφDΩ ] e−S[Ω,φ,h̄,h] . (19)

The expression Eq. (19) generates a cumulant series
when expanded with respect to the hopping variable t.
The relevant second-order term that contains the quartic
fermionic term becomes

S(2)
[
h̄, h

]
= −t2

∑

〈r1r′1〉

∑

〈r2r′2〉

∫ β

0

dτ dτ ′

×〈z̄(r1τ)z(r′1τ)z̄(r2τ
′)z(r′2τ

′)〉U(1)

×
∑

αα′

∑

γγ′

〈[
R†(r1τ)R(r′1τ)

]
αα′

×
[
R†(r2τ

′)R(r′2τ
′)

]
γγ′

〉

SU(2)

h̄α(r1τ)hα′(r′1τ)

×h̄γ(r2τ
′)hγ′(r′2τ

′) , (20)
where

〈. . .〉U(1) =
∫

[Dφ] . . . e−S[φ]

∫
[Dφ] e−S[φ]

(21)

is the averaging over U(1) phase field while

〈. . .〉SU(2) =
∫

[DΩ ] . . . e−S[Ω ]

∫
[DΩ ] e−S[Ω ]

(22)

is the averaging over spin-angular variables. The averag-
ing in the charge sector is performed with the use of the
U(1) phase action

S[φ] =
∑

r

∫ β

0

dτ

[
φ̇2(rτ)

U
+

2 µ

iU
φ̇(rτ)

]
(23)

that contains both the kinetic and Berry terms of the
U(1) phase field in the charge sector. For the U(1) aver-
age in Eq. (20) we get

〈z̄(r1τ)z(r′1τ)z̄(r2τ
′)z(r′2τ

′)〉U(1)

≈ (
δr1r′1δr2r′2 + δr1r′2δr′1r2

)

×e−
U
2

[
|τ−τ ′|−(τ−τ ′)2

/β
]
. (24)

Specializing to the low-temperature limit

lim
τ→0

∫ β

0

dτ ′ e−|τ−τ ′|U/2

= lim
τ→0

(
2
U
− 2e−βU

2

)
=

2
U

, (25)

we obtain the result for the U(1) phase average.
The calculation of the SU(2) average is done with help

of the effective action that involves the spin-directional
degrees of freedom Ω , whose important fluctuations cor-
respond to rotations. This can be done by integrating
out fermions Z =

∫
[DΩ ]e−S[Ω ] where

S[Ω ] = − ln
∫

[DφDh̄Dh]e−S[ϕ,φ,ϑ,h̄,h] (26)

generates the low-energy action in the form S[Ω ] =
S0[Ω ] + SB[Ω ] + SJ [Ω ]. The interaction term with the
spin stiffness becomes

SJ [Ω ] =
J(∆)

4

∑

〈rr′〉

∫ β

0

dτΩ(rτ) ·Ω(r′τ) , (27)

with the antiferromagnetic (AF) exchange coefficient

J(∆c) =
4t2

U
(n↑ − n↓)

2 ≡ 4t2

U

(
2∆c

U

)2

. (28)

From Eq. (28) it is evident that for U → ∞ one has
J(∆c) ∼ 4t2

U since 2∆c

U → 1 in this limit. Thus, in
the strong-coupling limit, the half-filled Hubbard model
maps onto the quantum Heisenberg model. If we work in
Dirac “north pole” gauge χ(rτ) = −ϕ(rτ) one recovers
the familiar form

SB[Ω ] =
θ

i

∑
r

∫ β

0

dτϕ̇(rτ) [1− cos ϑ(rτ)] . (29)

Here, the integral on the right-hand side of Eq. (29) has
a simple geometrical interpretation as it is equal to a
solid angle swept by a unit vector Ω(ϑ, ϕ) during its mo-
tion [11]. The extra phase factor coming from the Berry
phase requires some little extra care, since it will induce
quantum-mechanical phase interference between config-
urations. In regard to the nonperturbative effects, we re-
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alized the presence of an additional parameter with the
topological angle or so-called theta term

θ =
∆c

U
(30)

that is related to the Mott gap. In the large-U limit, one
has ∆c → U/2, so that θ → 1

2 relevant for the half-integer
spin. The kinetic-energy term in the spin sector becomes

S0[Ω ] =
∑

r

∫ β

0

dτ [ϑ̇2(rτ) + ϕ̇2(rτ) + χ̇2(rτ)

+2ϕ̇(rτ)χ̇(rτ) cos ϑ(rτ)]/4Es, (31)
where Es = 1/(2χT ) and

χT =





1
8J

, t ¿ U,

1
2π

1
t

√
t

U
, t À U,

(32)

is the transverse spin susceptibility.
Now we switch to the CP1 representation for the SU(2)

fields, so the spin-quantization axis can be conveniently
written as

Ω (rτ) =
∑

αα′
ζ̄α (rτ)σαα′ζα′ (rτ) . (33)

As a consequence, all the terms in the spin action can
be expressed as functions of unimodular ζα(rτ) variables
instead of angular variables, which are more complicated
to be handled. Finally, the action assumes the form

S [
ζ̄, ζ

]
=

∑
r

∫ β

0

dτ
{

2χT ζ̇ (rτ) · ζ̇ (rτ)

−θ(−1)r
[
ζ̄ (rτ) · ζ̇ (rτ)− ˙̄ζ (rτ) · ζ (rτ)

]}

−J
∑

〈rr′〉

∫ β

0

dτĀ (rτr′τ)A (rτr′τ) (34)

with the bond operators

Ā (rτr′τ)A (rτr′τ) = −1
4
Ω (rτ) ·Ω (r′τ) +

1
4

,

A (rτr′τ) =
ζ↑ (rτ) ζ↓ (r′τ)− ζ↓ (rτ) ζ↑ (r′τ)√

2
. (35)

In order to achieve a consistent representation of the
underlying antiferromagnetic structure, it is unavoidable
to explicitly split the degrees of freedom according to
their location on sublattice A or B. Since the lattice is
bipartite, allowing one to make the unitary transforma-
tion

ζ↑(rτ) → −ζ↓(rτ) , ζ↓(rτ) → ζ↑(rτ) (36)
for sites on one sublattice, so that the antiferromagnetic
bond operator becomes

A(rτr′τ) → A′(rτr′τ) =
2∑

α=1

ζα(rτ)ζα(r′τ)√
2

. (37)

This canonical transformation preserves the unimodular
constraint of the CP1 fields.

The calculation of the second-order contribution to
the effective fermionic action in Eq. (20) is more involved
since the SU(2) averages contain tensorial quantities of
the form

Mαα′,γγ′(rτ, r′τ |r′τ, rτ)

=
〈[

R†(r1τ)R(r′1τ)
]

αα′

×
[
R†(r2τ

′)R(r′2τ
′)

]
γγ′

〉

SU(2)

. (38)

The sublattice transformation of the CP1 variables in
Eq. (36) translates to the transformation of the rotation
matrix R(rτ) → R̃(rτ) matrix

R(rτ) = (i σ̂y)R̃(r′τ) , (39)
where R̃(rτ) is the transformed form of the rotation
matrix

R̃(rτ) =

[
−ζ2(rτ) −ζ̄1(rτ)
ζ1(rτ) −ζ̄2(rτ)

]
. (40)

It is convenient to define the following bond operator
constructed from the CP1 fields:

F(rτr′τ) =
ζ̄1(rτ)ζ1(r′τ) + ζ̄2(rτ)ζ2(r′τ)√

2
. (41)

With the definition in Eq. (41) the matrix
Mαα′,γγ′(rτ, r′τ |r′τ, rτ) will be written in a com-
pact form as

Mαα′,γγ′(rτ, r′τ |r′τ, rτ)

=

〈



FF̄ FĀ −FA FF
−ĀF̄ −ĀĀ ĀA −ĀF
AF̄ AĀ −AA AF
F̄F̄ F̄Ā −F̄A F̄F




αα′,γγ′

〉

SU(2)

(42)

where αα′, γγ′ = {11, 12, 21, 22}. Now, we can rewrite
the second-order fermionic action taking into account
the non-vanishing averages over CP1 fields to get

S(2)[h̄, h] = − t2

U
∫ β

0

dτ
∑

〈rr′〉
M11,11(rτ, r′τ |r′τ, rτ)

∑
α

h̄α(rτ)hα(r′τ)h̄α(r′τ)hα(rτ)

+M11,22(rτ, r′τ |r′τ, rτ)


∑

αβ

h̄α(rτ)hα(r′τ)h̄β(r′τ)hβ(rτ)−
∑
α

h̄α(rτ)hα(r′τ)h̄α(r′τ)hα(rτ)



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+M12,21(rτ, r′τ |r′τ, rτ)


∑

αβ

h̄α(rτ)hβ(r′τ)h̄β(r′τ)hα(rτ)−
∑
α

h̄α(rτ)hα(r′τ)h̄α(r′τ)hα(rτ)




+M12,12(rτ, r′τ |r′τ, rτ)


∑

αβ

h̄α(rτ)hβ(r′τ)h̄α(rτ ′)hβ(rτ)−
∑
α

h̄α(rτ)hα(r′τ)h̄α(r′τ)hα(rτ)


 . (43)

In deriving the above result, we made the observation
that the dynamics of spin variables is slower as compared
to the charge counterparts, allowing to treat SU(2) vari-

ables as local in time R(rτ ′) = R(rτ)+(τ ′−τ)∂τR(rτ)+
O[(τ ′ − τ)2]. Furthermore, we can reduce Eq. (43) to a
compact form

S(2)[h̄, h] =
t2

U

∫ β

0

dτ
∑

〈rr′〉

[
γ1n(rτ)n(r′τ) + γ2Ā′h(rτr′τ)A′h(rτr′τ) + γ3Sh(rτ) · Sh(r′τ) + γ4n(rτ)

]
, (44)

where the interaction coefficients
γ1 = f2(0) + 2g2(0) + g2(d) + 4f2(d) > 0 ,

γ2 = −2[6f2(d) + 2f2(0)] < 0 ,

γ3 = 4[f2(0)− g2(d)] ,

γ4 = 2g2(d) + 2f2(d) + 4g2(0) > 0 (45)
are given in terms of the CP1 normal (g) and anomalous
(f) correlation functions

g(r − r′) = − 〈
ζα(rτ)ζ̄α(r′τ)

〉
SU(2)

,

f(r − r′) = 〈ζα(rτ)ζα(r′τ)〉SU(2) . (46)

From the result in Eq. (43) we can deduce the spin-
-singlet pairing possibility in the fermionic sector. To
bring the kinetic-energy term to a standard form, one
performs a rotation of the fermionic variables on one of
the sublattices in a manner similar to the bosonic trans-
formation in Eq. (36):

h↑(r′τ) → −h↓(r′τ) ,

h↓(r′τ) → h↑(r′τ) . (47)
As a result the hopping term assumes the conventional
form that is diagonal in the spin indices

S
(1)
t [h̄, h] = −t̃

∑

〈rr′〉,α

∫ β

0

h̄α(rτ)hα(r′τ) , (48)

while the second-order term is given by

S(2)[h̄, h] =
∑

〈rr′〉

∫ β

0

dτ
[
γ1n(rτ)n(r′τ)

− γ2Āh(rτr′τ)Ah(rτr′τ)
]
, (49)

where

Ah(rτr′τ) =
h↑(rτ)h↓(r′τ)− h↓(rτ)h↑(r′τ)√

2
,

Āh(rτr′τ) =
h̄↓(r′τ)h̄↑(rτ)− h̄↑(r′τ)h̄↓(rτ)√

2
(50)

are the bond operators relevant for a singlet pairing. The
rotational invariance of the right-hand side in Eq. (49) is
manifested since

−Āh(rτr′τ)Ah(rτr′τ)

= Sh(rτ) · Sh(r′τ)− 1
4
nh(rτ)nh(r′τ) . (51)

The coefficients γ1 and γ2 are given by Eq. (45). By not-
ing that g(d) = 0 and f(0) = 0 one obtains

γ1 =
4t2

U

[
f2(d) +

1
2
g2(0)

]
,

γ2 =
4t2

U

[
3f2(d)

]
= J

[
3Q2

J2(∆)

]
. (52)

The effective nonretarded interaction containing γ2 in
front of the Ā(rτr′τ)A(rτr′τ) term is negative and
therefore constitutes the attractive potential for fermion
pairing. The result is plotted in Fig. 1. Let us note that
the pairing interaction survives in rather narrow range
of the Coulomb interaction 1.17 < U/t < 1.41. This
result suggests that superconductivity in the Hubbard
model, if possible, represents a rather delicate balance
between kinetic energy and Coulomb interaction. More-
over, the form of the effective fermionic action suggests
that other competing ordered phases can occur simul-
taneously, which can quench the superconductivity sub-
stantially. Therefore, the issue of pairing interaction is
not settling the question about the long-range supercon-
ducting order in the Hubbard model. As far as modeling
of cuprates is concerned, there is also a problem of inter-
plane interaction, entirely omitted in the present work,
which can affect the bulk superconductivity considerably.
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Fig. 1. Pairing interaction γ2 normalized to
the hopping parameter t (upper curve) and the
antiferromagnetic-exchange parameter J = 4t2/U
(lower curve) as a function of the Coulomb interaction
U/t calculated at zero temperature and half filling
µ̄ = 0 for the two-dimensional Hubbard model with
nearest-neighbors hopping.
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