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We discuss spin dependent single particle charge transport as well as the spin pairwise entanglement processes
in a double barrier junction. The junction consists of a superconductor connected to two normal or spin-polarized
conductors, or semiconductors. Special attention is focused on a non-local process known as a crossed Andreev
reflection. The non-local Andreev reflection occurs when an incident electron (hole) from one lead, injected with
a subgap energy onto a superconducting layer, transforms into an Andreev hole (electron) in the second lead. At
the same time, a Cooper pair is created in the superconductor. Using the Bogolubov–de Gennes equation with
appropriate boundary conditions we calculate and discuss probabilities of processes relevant for charge transport
through the junction. The dependence of the tunneling charge transport on the strength and orientation of the
exchange field in the ferromagnetic electrodes, and on the height of the tunnel barriers as well as on the distance
between the electrodes are presented. We discuss briefly the physics of creation and charge transport of spin
entangled electron–hole pairs in the junction.

PACS numbers: 74.45.+c, 73.23.Ad, 03.65.Ud

1. Introduction

In this paper we have considered charge transport
through M/S/M nanoscale junctions (M — metal, half-
-metal, ferromagnetic metal or semiconductor; S — su-
perconductor). In particular, we have concentrated on
the role of the local (LAR) and nonlocal (crossed An-
dreev reflection — CAR) Andreev reflections [1–8] both
in the single-particle transport as well as the pairwise
spin entangled transport. The charge transport can be
decomposed into two components, local if the entangled
quasiparticles enter the same lead and nonlocal if they
enter different leads. The local processes occur in the sin-
gle normal- or ferromagnetic (F) metal–superconductor
junction. The nonlocal processes occur when the dis-
tance l between the electrodes of the M/S/M junction is
less than or comparable to the superconducting coher-
ence length ξ [7, 8]. Experimental evidence for CAR and
for the elastic cotunneling (EC) has been given by Russo
et al. [3] and by Beckmann and von Löhneysen [4]. If
the thickness of S layer is large enough, a double tun-
nel junction can be regarded as two independent single
M/S junctions and then the tunneling processes become
incoherent [6]. In addition, the total electronic current in
the F/S/F junction strongly depends on the relative ori-
entation of the magnetization of two ferromagnetic elec-
trodes [7, 8]. CAR is a consequence of capturing an ad-
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ditional electron (or hole) from the second (e.g. right)
electrode in order to form a Cooper pair in the supercon-
ductor. The appropriate hole (or electron) is reflected in
the right electrode. EC consists in the direct tunneling
of the injected particle from one electrode to the sec-
ond one, without formation of the Cooper pair [5]. The
electron-like quasiparticle penetrates depth of order of
the superconducting coherence length ξ before its con-
version into the condensate of the Cooper pairs. The
quasiparticle current JQ in the superconducting layer
disappears, in y-direction across the junction, accord-
ing to the formula JQ = 2evF exp(−y/ξ), where the co-
herence length is given by ξ = ~vF/(2

√
∆2 − E2), ∆ is

the superconducting gap. Simultaneously, JQ is trans-
formed into an increasing supercurrent of the Cooper
pairs Js = 2evF[1−exp(−y/ξ)]. In this paper, we discuss
how the nonlocal effects are influenced by the energy of
the incident electron and the width l of the supercon-
ducting layer.

In general, the phase coherent, ballistic charge trans-
port, through the multi-barrier junctions with supercon-
ducting layers, may also lead to quantum entanglement of
the charge carriers. In particular, in the case of M/S/M
junction CAR enables realization of the solid state entan-
glers, which create mobile and spatially separated entan-
gled pairs of electrons (holes) or an electron–hole pair.
In Sect. 3, we discuss briefly the problem of creation and
spatial separation of spin entangled electron–hole pairs
in the M/S/M junction.
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2. Model and the calculations

In this section, we consider a single particle transport
in a double junction M/S/M, consisting of two metal-
lic (normal or ferromagnetic) electrodes and a supercon-
ducting layer separated from the electrodes by thin in-
sulating interfaces. We consider a model of the M/S/M
junction with a clean superconductor. In the clean limit,
one can easily solve the Bogolubov–de Gennes (BdG)
equations in the approach proposed in [9]. The wave
function, describing the quasiparticle propagation across
the M/S/M junction, can be obtained from extended
BdG equations. In the ferromagnetic regions, these equa-
tions are reduced to the appropriate Schrödinger equa-
tions of the form(

H0 − E − σhex, ∆
∆† −(H0 − E + σhex)

)(
fσ(r)
g−σ(r)

)

= Ô , (1)
where H0 = −~2/2m∇2 − EF + W (r) is the single-
-particle Hamiltonian, the quasiparticle energy E is mea-
sured from the Fermi energy EF, and σ = +(−) de-
notes the up (down) spin subband. In the case of a nor-
mal metal σ = 0, W (r) stands for the interface poten-
tial which is expressed by the dimensionless parameter
z = 2mW/~2kF [5, 9]. For the ferromagnetic electrodes,
we adopt the Stoner model. Thus, the exchange field in
both the left (L) (y < −l/2) and the right (R) electrodes
(y > l/2) can be defined as follows:

hex =





h0, y < −l/2,

0, −l/2 < y < +l/2,

±h0, y > l/2,

(2)

where +h0 and −h0 are the exchange fields for the par-
allel and antiparallel configuration, respectively. The so-
lution of Eq. (1) for the injection of an electron with spin
σ (from one, e.g. the left ferromagnetic electrode) and
with the energy E, and the angle of incidence Θ can be
written in the following form:

Ψ (y<−l/2)
σ (y) =

(
1
0

)
e ik+

σ y

+a−σ

(
0
1

)
e ik−−σy + bσ

(
1
0

)
e− ik+

σ y, (3)

Ψ (y>l/2)
σ (y) = cσ

(
1
0

)
e ik+

σ(−σ)y

+dσ

(
0
1

)
e− ik−−σ(σ)y, (4)

where the y component of the momentum for both
an electron (k+

σ ) and hole (k−σ ) takes the form:

k±σ =
√

(2m/~2)(EF + σh0 ± E)− k2
||,σ. The momen-

tum parallel to the interface has the form: |k||,σ| =√
(2m/~2)(EF + σh0 + E) sin(Θ).
The probability amplitudes of the transport processes

aσ(E,Θ), bσ(E,Θ), cσ(E,Θ), dσ(E,Θ) determine LAR,

Fig. 1. Relative contribution of the LAR Rloc =
|aσ|2/(|aσ|2 + |dσ|2) to the entanglement processes as
a function of E/∆ for several values of x = h0/EF and
z = 2mW/~2kF and for l < ξ.

Fig. 2. Relative contribution of LAR Rloc to the trans-
mission processes as a function of E/∆ for several values
of x and z and for l > ξ.

Fig. 3. Relative contribution of CAR Rnon-loc =
|dσ|2/(|aσ|2 + |dσ|2) to the transmission processes as a
function of E/∆ for several values of x and z and for
l < ξ.
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Fig. 4. Relative contribution of CAR Rnon-loc to the
transmission processes as a function of E/∆ for several
values of x and z and for the width l > ξ.

normal (NR) reflections, EC, and CAR, respectively [5–8,
10, 11]. The relative values of the single particle lo-
cal Rloc = |aσ|2/(|aσ|2 + |dσ|2) and non-local Rnon-loc =
|dσ|2/(|aσ|2 + |dσ|2) Andreev reflections are presented in
Figs. 1–4. The oscillations in Figs. 1–4 are due to the
interference of the incoming and outgoing particles in
the superconducting layer. The non-local process is com-
pletely suppressed for sub-gap energies and l > ξ. For
E/∆ > 1, the probabilities of the coherent single parti-
cle charge transport processes (LAR, CAR, NR, and EC)
oscillate with the energy and the thickness of the super-
conducting layer. Moreover, both aσ and dσ vanish if
the following resonance condition is fulfilled: q+

σ − q−σ =
2nπ/l, for the momentum in the superconducting layer S

given by q±σ =
√

(2m/~2)(EF ±
√

E2 −∆2)− k2
||,σ [5, 6,

10, 11]. The coefficients aσ(E,Θ), bσ(E,Θ), cσ(E,Θ),
dσ(E,Θ) are determined by the appropriate boundary
conditions for the wave functions and their derivatives
at the both interfaces which are placed at y = ±l/2.
These coefficients determine not only the charge trans-
port through M/S/M junctions, but also they reflect the
pairing symmetry of the superconductor (see e.g. [12]).
The sign of the voltage, measured across the second
S/M tunnel barrier of the junction M/S/M, depends
upon whether EC or CAR occurs with larger probabil-
ity [3]. In the case of half-metallic ferromagnet electrodes
(x = h0/EF = 1) the process of CAR can be completely
suppressed while EC is allowed, or vice versa, depending
on the mutual (parallel or antiparallel) alignments of the
electrode magnetizations. In the case of the singlet super-
conductors, the processes which lead to tunneling of the
particles to the different leads, can be enhanced for the
antiparallel magnetic configuration, or can be suppressed
for the parallel configuration of the ferromagnetic elec-
trodes. This coherent transport is particularly interesting
because of its promising perspective for spintronics ap-
plication by implementation of magnetoresistive devices,
such as spin switches, memory elements, magnetic read-
-out heads for computer hard drives, spin transistors etc.

The separation between the both, left (L) and right (R)
metallic electrodes should be comparable to the super-
conducting coherence length (ξ) in order to enable CAR.

Fig. 5. Sketch of the reflection processes responsible
for local and non-local entanglement in the M/S/M
junction.

3. The Andreev entangler: creation of spin
entangled pairs

The charge transport in M/S/M junctions is accom-
panied by the creation of spin entangled quasiparticle
pairs. The source of this entanglement is the Cooper
pairing interaction. If a negative (positive) bias volt-
age eV = µS − µL is applied to the left conductor, then
the holes (electrons), incident on the superconducting
layer, change their sign of charge and their spin direc-
tion (Fig. 5). Rloc and Rnon-loc are directly related to the
efficiency of the production of the entanglement electron–
hole pairs. It can be seen in Fig. 4 that if E > ∆, the
production of the non-local spin-entangled pairs is more
effective for large values of the barrier strength z and
l > ξ. The ground state of the left electrode |0〉 is defined
as follows by the appropriate hole creation operators:

|0〉 =
∏

0<E<eV,σ

ah†
Lσ(E)|G〉 , (5)

where |G〉 denotes the Fermi sea filled up to the super-
conducting chemical potential µs (see Fig. 5). It is con-
venient to write the input state |Ψin〉 of the holes (elec-
trons), injected to the superconducting layer, in terms
of the stream of hole (electron) pairs with the oppo-
site spins. For example, for the hole pairs we can write
[13, 14]:

|Ψin〉 =
i
2

∏

0<E<eV

âh†
L (E)σyâh†T

L (E)|G〉 , (6)

where âh
L = (ah

L↑(E)ah
L↓(E))T is a column matrix of the

annihilation operators of a pair of holes with the antipar-
allel spins and energy E at the left conductor. σy and T
stands for the Pauli matrix and the matrix transpose,
respectively. The evolution of the input state |Ψin〉 into
the output state |Ψout〉 can be connected through unitary
transformation, which can be expressed in terms of the
scattering matrix Ŝ [13]. The scattering matrix matches
the wave functions at both M/S and S/M interfaces in
a double barrier junction [15]. In our further discussion,
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we take into account only the Andreev reflections and ne-
glect the EC. A relation between the input (â) and output
(b̂) matrices of the electron (e) and hole (h) annihilation
operators can be written in the following form [13]:

b̂ = Ŝâ , (7)

where â ≡ (ae
L↑, a

e
L↓, a

e
R↑, a

e
R↓, a

h
L↑, a

h
L↓, a

h
R↑, a

h
R↓)

T and
b̂ ≡ (be

L↑, b
e
L↓, b

e
R↑, b

e
R↓, b

h
L↑, b

h
L↓, b

h
R↑, b

h
R↓)

T are column ma-
trices. Ŝ is 8 × 8 scattering matrix, which describes all
the reflection processes at the left (L) and right (R) in-
terfaces:

Ŝ =




See
LL↑↑ See

LL↑↓ 0 0 Seh
LL↑↑ Seh

LL↑↓ Seh
LR↑↑ Seh

LR↑↓
See

LL↓↑ See
LL↓↓ 0 0 Seh

LL↓↑ Seh
LL↓↓ Seh

LR↓↑ Seh
LR↓↓

0 0 See
RR↑↑ See

RR↑↓ Seh
RL↑↑ Seh

RL↑↓ Seh
RR↑↑ Seh

RR↑↓
0 0 See

RR↓↑ See
RR↓↓ Seh

RL↓↑ Seh
RL↓↓ Seh

RR↓↑ Seh
RR↓↓

She
LL↑↑ She

LL↑↓ She
LR↑↑ She

LR↑↓ Shh
LL↑↑ Shh

LL↑↓ 0 0
She

LL↓↑ She
LL↓↓ She

LR↓↑ She
LR↓↓ Shh

LL↓↑ Shh
LL↓↓ 0 0

She
RL↑↑ She

RL↑↓ She
RR↑↑ She

RR↑↓ 0 0 She
RR↑↑ She

RR↑↓
She

RL↓↑ She
RL↓↓ She

RR↓↑ Shh
RR↓↓ 0 0 Shh

RR↓↑ Shh
RR↓↓




. (8)

All the elements of the scattering matrix Ŝ describe
appropriate Andreev reflections. For example, Seh

LL↑↓ de-
notes the LAR amplitude for a hole with spin down in-
jected from the left lead (L) and reflected from the M/S
interface, as an electron with spin up into the same lead.

In the tunneling limit, the transparencies of the tunnel
barriers (TL(R)) as well as the elements of the scattering
matrix Ŝ obey the relations: TL(R) ¿ 1 and Sαβ

(...) ¿ 1.
Thus, the outgoing state, to the first order of the scat-
tering matrix elements, can be written as a superposition
of the vacuum state |0〉 and the local and non-local spin
singlet entangled states [13]:

|Ψout〉 =
√

1− T 2
L − TLTRγ(l)|0〉+ TL|Ψloc〉

+
√

TLTRγ(l)|Ψnon-loc〉 , (9)
where the local and non-local spin singlet states have the
form

|Ψloc〉
=

1√
2

[
bh†
L↑(E)be†

L↓(E)− bh†
L↓(E)be†

L↑(E)
]
|0〉 , (10)

|Ψnon-loc〉

=
1√
2

[
bh†
L↑(E)be†

R↓(E)− bh†
L↓(E)be†

R↑(E)
]
|0〉 . (11)

γ(l) = exp(− 2l
πξ ) describes how a Cooper pair decays

with the width l of the superconducting layer. As seen
from Eq. (9), the outgoing state consists of the locally
(TL) and non-locally (

√
TLTR) spin entangled electron–

hole pairs. In our case, this spatially separated stream
of entangled electron–hole pairs is created by the tunnel
barriers in the S/M junction due to the superconduct-
ing layer. Further numerical calculations, concerning an
influence of the oscillations of the transport processes
through M/S/M junctions [5, 6, 10, 11], on the charge

and spin currents, and on the degree of spin entangle-
ment in these junctions, are in progress.

4. Results and conclusions

The coherent charge transport through the double
junction M/S/M reveals many unusual features both for
the subgap transmission and for energy greater than su-
perconducting gap. It was shown [5, 6, 10, 11] that, if
the energy of the incident electron is greater than the
superconducting gap ∆, the probabilities of all the com-
ponents of the coherent transport processes, i.e. LAR,
CAR and NR as well as the direct tunneling through the
double junction, oscillate as the functions of E/∆ and
l due to the interference of the incoming and outgoing
particles in the superconducting layer. If the thickness of
the superconductor layer l is smaller than the supercon-
ducting coherence length ξ, the non-local processes EC
and CAR play an important role in the charge transport
for the subgap energy. In the opposite limit, suppression
of EC and CAR is observed [5, 6, 10]. Observation of
the variations of the tunneling current in double junc-
tions for different widths of the superconducting layer is
reported in [5]. The maxima (minima) of the elastic co-
tunneling correspond one to one to minima (maxima) of
LAR, CAR, and NR. If l ≥ ξ, then the non-local pro-
cesses decay. When EC dominates, i.e. when the charge
carriers pass from the left to the right electrode without
conversion into the supercurrent, LAR and CAR decay
at the both interfaces. It is worthy mentioning that the
typical ranges of the coherence length are of the order of
ξ = 10 Åand ξ = 1.0 µm for high-Tc and low-temperature
superconductors, respectively. The electron-beam litho-
graphy technique allows one to fabricate devices which
have sizes of the order of tens nm.

The important role in the transport processes through
the double junction is played by the pairing symmetry
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of a superconducting state and the magnetic orientation
of the ferromagnetic electrodes [12]. For example, in the
case of the spin singlet pairing and the parallel magnetic
configuration of the electrodes, LAR and CAR are sup-
pressed and for half-metals (x = h0/EF = 1) these pro-
cesses are completely blocked. In the case of antiparallel
alignment, CAR is favoured while LAR is suppressed (or
blocked for half-metals). In Sect. 3 we have briefly dis-
cussed another intriguing aspect of the coherent trans-
port in the double barrier junction, where except the
single particle transport the spin-entangled electron–hole
pairs can tunnel into the local and non-local leads. The
spatially separated spin entangled electron–hole pairs are
created due to tunnel barriers and CAR. Another source
of non-local spin entangled electron pairs is the emission
of electrons from an s-wave superconductor to two sepa-
rated leads via quantum dots, in the Coulomb blockade
regime (see e.g. [16]).

Multiterminal junctions e.g. M/S/M are promising ex-
amples of solid state entanglers. The controlled creation
and detection of the mobile entangled pairs of charge
carriers, in spatially separated nanoelectronic leads, is
crucial for quantum information. The spin of these mo-
bile particles can be used as qubits. The nonlocal spin-
-entangled electron pairs can be detected e.g. via the
current–noise measurements in transport experiments.

Finally, it can be said, for instance, that various as-
pects of the tunneling quasiparticle transport, mainly the
coherent one, through the double barrier junctions ex-
hibits unusual features which turned out to be useful in
nanoelectronic physics. The coherent pairwise tunneling
transport of spin entangled pairs in spatially separated
leads seems to be very promising for quantum informa-
tion.
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