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Motivated by recent advances in fabricating graphene nanostructures, we find that an electron can be trapped
in Z-shaped graphene nanoconstriction with zigzag edges. The central section of the constriction operates as a
single-level quantum dot, as the current flow towards the adjunct sections (rotated by 60◦) is strongly suppressed
due to mismatched valley polarization, although each section in isolation shows maximal quantum value of the
conductance G0 = 2e2/h. We further show that the trapping mechanism is insensitive to the details of constriction
geometry, except from the case when widths of the two neighboring sections are equal. The relation with earlier
studies of electron transport through symmetric and asymmetric kinks with zigzag edges is also established.
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1. Introduction

Soon after the breakthrough in its fabrication [1, 2],
an atomically-thin carbon monolayer (graphene) has at-
tracted intense experimental and theoretical attention.
An unusual band structure of graphene leads to exotic
electronic properties [3], which makes possible either to
create devices that have no analogue in silicon-based
electronics [4], or to test various predictions of rela-
tivistic quantum mechanics in a condensed-matter sys-
tem [5]. Additionally, graphene’s true two-dimensional
nature combined with high carrier mobility makes it a
promising base material for studying low dimensional
systems, such as quantum wires realized as graphene
nanoribbons [6–10], or quantum dots [11–13]. Just to give
a recent example, the exotic features of quantum chaotic
behavior, characteristic for massless spin-1/2 fermions
confined in a quantum dot [14], have been found both
in an experiment [12] and computer simulations [15].

Theoretical researches on graphene nanostructures
have started much earlier [16–19] but speed up after it
was realized that such systems are promising building
blocks for a solid-state quantum computer [20, 21]. In at-
tempt to operate on a solid-state qubit [22] in graphene,
one needs to deal with an obstacle that electrons occur
in two degenerate families, corresponding to the presence
of two different valleys in the band structure. Trauzettel
et al. [20] propose to solve this problem by using the in-
sulating graphene nanoribbon with armchair edges, for
which the valley degeneracy is lifted up by the bound-
ary condition [23]. Then, applying the gate voltage to
a finite section of the ribbon, one forms the quantum

dot which has a single relevant electronic level (with a
spin-only degeneracy) for a considerably wide interval of
electron Fermi energies, and thus is called a single-level
quantum dot (SQD). As a fabrication of perfect arm-
chair nanoribbon seems to be difficult due to the edge
instability [24, 25] alternative approaches, employing si-
multaneously external magnetic field and the mass con-
finement to break valley degeneracy in graphene rings
[26, 27], disks [28], or antidots [29, 30], have been dis-
cussed. The operational simplicity of the device [20],
offering a fully-electrostatic control, has inspired design-
ing its counterpart based on a nanoribbon with predom-
inantly zigzag edges [31], similar to these already ob-
tained in well-controlled fabrication processes [7–9]. An
additional motivation to focus on ribbons with zigzag
edges comes from the two theoretical findings: (i) local-
-density approximation results [32] show that the elec-
tronic structure of narrow graphene constrictions can be
well described by a simple tight binding model, and (ii)
analytical discussion of the tight-binding equations for a
semi-infinite honeycomb lattice [33] shows that the zigzag
boundary condition applies generically (at low energies)
to arbitrary lattice termination, except from the case we
have a perfect armchair edge.

The device [31], however, still needs sections of insu-
lating ribbon with armchair edges, attached serially to
both sides of the central section with zigzag edges (op-
erating as SQD) to suppress the outward current flow.
In this paper, we demonstrate numerically that a sim-
ilar Z-shaped constriction, in which each of the three
sections has zigzag edges (see Fig. 1a) and carries a fully
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conducting channel, may operate as highly-effective SQD
due to mismatched valley polarization between the neigh-
boring sections (rotated by 60◦). The operation of such
a double-kink device is rationalized by referring to the
conductance spectrum of a single-kink device (Fig. 1b)
which suppress the current [34], and to the discussion of
level quantization for a finite section of the ribbon with
zigzag edges [35].

Fig. 1. The systems studied numerically in the paper.
(a) Quantum-dot device made of zigzag nanoribbon of
the width WD and the length LD, attached to similar
ribbons of the width W1 rotated by 60◦. (b) The kink
device formed by two zigzag ribbons of widths WL and
WR. Each of the systems is connected to heavily-doped
graphene leads (shadow areas) displaced by the distance
L along the x-axis.

The paper is organized as follows: In Sect. 2 we briefly
present the numerical method of the conductance calcula-
tion in a tight-binding model of graphene, and discuss its
relation to the effective Dirac equation. Then, in Sect. 3,
we recall the idea of valley polarization in constrictions
with zigzag edges leading to the current suppression in
the kink device, and calculate numerically the conduc-
tance of kink devices with various geometries. Finally, in
Sect. 4, two kinks are attached serially and the resonance
transmission via quantum-dot levels is discussed.

2. Tight binding model for electron transport
in graphene

We start from the nearest-neighbor tight binding
model taking into account the 2pz orbitals of carbon
atoms [3], with the Hamiltonian

H =
∑

i,j

τij |i〉〈j|+
∑

i

Vi|i〉〈i| . (1)

The hopping matrix element τij = −τ if the orbitals
|i〉 and |j〉 are nearest neighbors on the honeycomb lat-
tice (with τ = 2.7 eV), otherwise τij = 0. The elec-
trostatic potential energy Vi ≡ V (xi) varies only along
the x-axis in the coordinate system of Fig. 1. It is cho-

sen as Vj = V∞ in the leads marked by shadow ar-
eas (x < 0 or x > L) or Vj = 0 in the device area
(0 < x < L). For a given Fermi energy E, the chemi-
cal potential µj ≡ E − V (xj) is equal to µ∞ = E − V∞
or to µ0 = E, respectively. Throughout the paper, we
analyze the system conductance as a function of µ0 at
V∞ fixed such that µ∞ corresponds to large number of
propagating modes (the heavily-doped leads limit).

In the limit of zero bias voltage, phase-coherent trans-
port properties of a noninteracting system such as de-
scribed by the Hamiltonian (1) are encoded in the scat-
tering matrix [36]:

S =

(
r t′

t r′

)
, (2)

which contains the transmission t (t′) and reflection r
(r′) amplitudes for charge carriers incident from the left
(right) lead, respectively. The conductance is determined
by the Landauer–Büttiker formula

G = G0 Tr tt† =
2e2

h

∑
n

Tn , (3)

where G0 = 2e2/h is the conductance quantum, and Tn

is the transmission probability for the n-th normal mode.
Apart from the simplest cases, when different transverse
modes are not mixed by the transport [23, 37] and the an-
alytical solutions are available, one needs to calculate the
transmission matrix numerically. This can be achieved
in two steps: First, we find the propagating modes in
the leads Ψ = [ψ(i)

n,+, ψ
(i)
n,−], where ψ

(i)
n,± denotes the n-th

incoming/outgoing mode in the i-th lead, with their self-
-energies ξn,±. Then, the scattering matrix (2) is ob-
tained from the Lee–Fisher relation

S = −1− i
√

vΨ †P† 1
H − E + Σ

PΨ
√

v . (4)

The self-energy term Σ = PΨdiag(ξn,+)Ψ †P† represents
the leads, with P the coupling matrix of the leads to the
contact region. The matrix v = diag(−2Imξn,+) contains
normalization factors proportional to the propagating ve-
locities for the modes. The direct matrix inversion in
Eq. (4) is usually avoided by finding the S matrix via
the recursive Green function algorithm, also available in
a version for a multi-terminal geometry [38]. For the two-
-terminal geometries considered here, and for the number
of lattice sites < 105, the direct matrix inversion with
standard numerical routines is also very effective. Ac-
cording to Eq. (4), the transmission matrix t depends on
the properties of both constituents of the device under
consideration: the leads and sample area. For the case of
weakly-doped graphene samples, however, it was shown
[39] that the transport of the Dirac fermions is insen-
sitive to the details of the leads, provided they carry a
sufficiently large number of propagating modes.

The method of the conductance calculation in a tight
binding model of graphene, described briefly above, rep-
resents an adaptation — to the honeycomb lattice — of
the method developed by Ando for a square lattice [40].
Albeit technically similar, from the fundamental point
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of view the two methods represent quite different ap-
proaches to mesoscopic physics. Ando’s approach starts
from a discretization of the Schrödinger equation in order
to solve the scattering problem for the geometries which
are not tractable in a continuous limit. Here, we deal
directly with the microscopic model of graphene, allow-
ing one to extent the discussion on the situation when its
effective model for low-energy excitations, given by the
massless Dirac equation [3], breaks down due to scatter-
ing the carriers between valleys [41]. A finite-difference
method for solving the Dirac equation on a square lattice
was also recently developed [42].

3. The kink device with zigzag edges
3.1. Valley polarization and the electron transport
To understand the physics ruling the conductance of

devices shown in Fig. 1, one needs first to recall basic
facts concerning electron transport through the constric-
tion with parallel zigzag edges: a building block of each
device considered. Such a constriction, also known as
the valley filter [21], was shown to produce, upon bal-
listic injection of current, the nonequilibrium valley po-
larization in a sheet of graphene attached. Motivated by
the related analytical result for generic boundary con-
ditions of graphene flakes [33] we have shown numer-
ically [34] that valley polarization is also produced by
constrictions with other edges, apart from the perfect
armchair edges. These observations are rationalized as
follows: For a constriction long enough, the transport
becomes one-dimensional, and crystallographic orienta-
tion of edges determines the direction of propagation in
the first Brillouin zone (see Fig. 2). As the lowest prop-
agating mode in such a nanoribbon lacks the twofold de-
generacy of higher modes (and may be arbitrary close
to one of the Dirac points K or K ′) the crystallographic
orientation also determines the valley polarization of cur-
rent passing the constriction (which is opposite for the
conductance, then for the valence band).

Now, the two quite different devices consisting of two
valley filters (of the opposite polarity) in series, can be
constructed. By simple applying a step-like potential
profile to the straight ribbon with zigzag edges, one ob-
tains the electrostatically-controlled valley valve [41]. Al-
ternatively, one can build the kink device [34, 43]. In both
cases, the current suppression due to mismatched valley
polarization produced by two constituents of the device,
is expected. However, a bit more detailed discussion of
the current-suppression mechanism on the example of the
kink device (see Fig. 2, bottom part) unveils its striking
feature: Strictly speaking, a one-to-one correspondence
between the direction of propagation and the valley in-
dex, appearing in a nanoribbon, causes the electron can
neither be transmitted nor reflected by the interface be-
tween two filters of opposite polarity! The same obser-
vation applies to the valley valve, for which the theoret-
ical analysis of microscopic tight-binding equations [41]
shows that the intervalley scattering processes lead to si-
nusoidal conductance oscillations around the mean value

Fig. 2. Schematic illustration of the mechanism of cur-
rent suppression in the kink device. Top part: hexago-
nal first Brillouin zone of graphene. The valleys centered
at two inequivalent Dirac points, labeled K and K′, are
shown schematically. Middle part: dispersion relation
for the ribbon with zigzag edges. For the lowest mode,
there is one-to-one correspondence between the direc-
tion of propagation (indicated by arrows) and the valley
isospin. The polarity switches (i) when changes the sign
of chemical potential µ, or (ii) when rotates the constric-
tion axis by 60◦. Bottom part: first Brillouin zone at the
two sides of the kink device. Solid (dashed) arrows indi-
cate the direction of propagation for K (K′) valley. As
corresponding points in the Brillouin zone propagate in
opposite directions at the two sides of the kink, electron
cannot pass the device unless additional (microscopic)
intervalley scattering processes are present.

G = 0.5G0 when rotating the interface line with respect
to the ribbon edge. The valve conductance also depends
on its width, and is significantly different for the cases
when zigzag and anti-zigzag ribbons are used, illustrat-
ing the microscopic nature of an electron transport. For
the kink device, an analytical solution is missing, and the
existing numerical results are overviewed briefly below.

3.2. Conductance of the kink device

The scattering problem for device similar to that
shown in Fig. 1b has been studied independently by sev-
eral authors. The perfectly symmetric kink, formed by
two semi-infinite nanoribbons with zigzag edges each of
which is carrying a single propagating mode, shows ir-
regular conductance oscillations with varying chemical
potential [43]. The oscillations cover the full range of
0 6 G 6 G0, and the upper limit is approached when
the resonances with quasi-bond states, localized at the
kink symmetry axis, occur. The system of tight-binding
equations describing the symmetric kink, however, was
found to be numerically stable only for ribbons of a mod-
erate width WL = WR . 10

√
3a (in units of the lat-

tice spacing a). In the case of an asymmetric kink with
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WL/WR = 2 attached to heavily-doped graphene leads
[34] we have G ¿ G0 at the first conductance step, and
the resonances do not appear. On the other hand, the
kink-like system formed by joining the two ribbons ro-
tated by 120◦ shows almost a perfect transmission, as
the mismatched-valley polarization does not appear in
such a case [44].

Here, we consider a slightly different geometry then
studied in Refs. [34, 43]. Namely, the kink device is at-
tached to heavily-doped graphene leads with armchair
edges. This guarantees the reflection symmetry of the
system when WL = WR, and eliminates the problem
with numerical stability occurring for wider ribbons in
the setup of Ref. [43]. We have fixed the left ribbon
width at WL = 40

√
3a, corresponding to the subband

splitting ∆ ≡ 1
2

√
3πτa/WL = πτ/80 and νL = 32 prop-

agating modes for µ∞ = V∞ = τ/2. The right ribbon
width is varied as WR/(

√
3a) = 10, 20, and 40.

Fig. 3. Conductance of the kink device as a function
of the chemical potential at fixed L = 100

√
3a (a) and

as a function of the constriction length at fixed µ0 =
∆/2 (b). Inset in part (a) shows a magnified region
between the Dirac point and the first conductance step.
In both parts, the width of left ribbon forming the kink
is fixed at WL = 40

√
3a, whereas the width of right

ribbon is varied between the curves.

The operation of the kink device is demonstrated in
Fig. 3. First, we took a sample area of the length
L = 100

√
3a and plot, in Fig. 3a, the conductance as a

function of the chemical potential. All three devices with
different WR show some conductance suppression at the
first plateau |µ0| . ∆. The conductance of the symmet-
ric kink (WR = WL) is still of the order of G ∼ 0.1G0,
but the asymmetric kinks show much stronger suppres-
sion at low energies (see the inset). For an additional
illustration we present, in Fig. 3b, the conductance as

a function of L at fixed µ0 = ∆/2. For L = 0, we have
G/G0 ≈ min(νL, νR) = νR, with the number of propagat-
ing modes in the right arm νR = 32 or 8 (for WR = WL

or WL/4, respectively). For larger L, G first decreases
exponentially, in order to saturate for L &

√
3WL/2 (the

length above which the role of evanescent modes becomes
negligible) in the symmetric case. For WR = WL/4,
G continues to decay and approaches the value ∼ 10−3G0

for longest examined systems, confirming the claim of
Ref. [34] that the asymmetric kink device in graphene
blocks the current very effectively at low dopings. These
findings also coincide with earlier results for Aharonov–
Bohm quantum rings [26, 45] for which intervalley scat-
tering rate was shown to be related to the presence of an
asymmetry or edge irregularities.

Away from the first plateau, each device shows con-
ductance quantization that is essentially governed by the
narrower arm width WR. In the symmetric case, however,
we have the steps corresponding to even multiplicities of
G0, whereas in the asymmetric case odd multiplicities
appear. This can be summarized in an approximating
formula for the kink conductance

G/G0 ≈ min(νL, νR)− δνL,νR , (5)
where the Kronecker delta δνL,νR accounts for mis-
matched valley polarization of the lowest propagating
modes in two kink arms, which affect the total conduc-
tance also at higher dopings.

4. Bound states of a double kink

The conductance spectra of Z-shaped nanoconstriction
of Fig. 1a are presented in Fig. 4. We consider three dif-
ferent devices, all built by joining finite sections of two
nanoribbons with zigzag edges: one of the 15

√
3a width,

and the other of the 20
√

3a width. In the first case, we
arrange the building blocks in a double-kink setup, such
that the central section is wider than the peripheral sec-
tions (WD = 20

√
3a, W1 = 15

√
3a). Next, we consider

the setup of a uniform width (WD = W1 = 15
√

3a). Fi-
nally, we took the peripheral sections wider than the cen-
tral one (WD = 15

√
3a, W1 = 20

√
3a). For each setup,

the total sample area length is fixed at L = 160a. The
results show, either for the narrow-wide-narrow or for
the wide-narrow-wide setup (see Figs. 4a and c, respec-
tively) that G ≈ 0 at the first conductance plateau except
from the narrow peaks, corresponding to resonances with
the quantum-dot states of the central section. Only for
a uniformly-wide device some finite intervals of µ0, for
which G 6 G0, appear in Fig. 4b.

These findings are related to the operation of the kink
device studied in previous section as follows: The asym-
metric kink blocks the current at low dopings, so two
identical devices of its kind in series function as an
electrostatically-controlled quantum dot (with an elec-
tron trapped between the kinks) regardless we join to-
gether wider, or narrower of the kink arms. The two
symmetric kinks in series may also trap an electron acci-
dentally, when the eigenstate of the central section lies in
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Fig. 4. Conductance of the double-kink device for
different arrangements of its ribbon-like sections.
(a) Narrow-wide-narrow, (b) uniformly-wide, and (c)
wide-narrow-wide setup.

an energy interval, for which the single-kink conductance
is low enough.

Fig. 5. Quantum-dot energy levels of the double-kink
device. Lines: dispersion relation of a nanoribbon
with zigzag edges. Datapoints in the inset: conduc-
tance maxima of a double kink with WD = 15

√
3a,

W1 = 4WD/3, and LD = 110a.

In Fig. 5, we plot the positions of the conductance max-
ima extracted from Fig. 4c, together with the dispersion
relation for an infinitely long nanoribbon of W = 15

√
3a

width. The k-coordinate of each maximum is related to
its number in sequence j as kj = π(j∗ − j)/LD, with
j∗ determined via E(K) = ∆/2. (Notice that the first
conductance maxima are blurred at finite machine pre-
cision due to the dispersionless character of the lowest
subband.) Strictly speaking, each bound state of the
central ribbon section of LD length is given by a unique
quantum superposition of propagating waves from K and
K ′ valleys [35], the dispersion relation for one valley is,

however, a mirror reflection of that for the second val-
ley. The data points shown in the inset of Fig. 5 fol-
low the dispersion relation for the lowest subband of a
nanoribbon with zigzag edges. Hence, for each peak in
the conductance spectrum of a double-kink device, the
corresponding quantum-dot energy level is found.

5. Conclusions

In conclusion, we have studied numerically the elec-
tron transport through Z-shaped nanoconstriction with
zigzag edges, operating as a quantum dot in graphene.
The device conductance, analyzed as a function of the
chemical potential, exhibits a series of narrow resonance
peaks. Each of the resonances is linked up to the energy
level of the central section, when separated from the other
parts of the device. An electron-trapping mechanism is
discussed by analyzing the transport through a basic de-
vice building block: the kink with zigzag edges. A mod-
erate current suppression is observed for the symmetric
kink, whereas the asymmetric kink was found to reflect
electrons almost perfectly. The role of a mismatched val-
ley polarization on both sides of the kink is stressed.

Similar bound states were recently found in the sim-
ulation of transport through S-shaped nanoribbon [46]
with irregular edges. However, such a system contains
finite sections of a nanoribbon with armchair edges, so
the nature of the electron-trapping mechanism is not as
clear as for the simpler system considered here.
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